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1 September 27

1.1 Administrative

Course Textbook Abstract Algebra (Dummit + Foote). Homework questions
from this book. A new textbook by Nuffi (Notes from the Underground).
Grading: Writing-In-Major Course

• Weekly short online assignments (5%)

• Problem Sets (20%)

• WIM (15%)

• Midterm (20%)

• Final (40%)

1.2 Intro

Several names in mathematics: ask yourself — why is this concept given a name.
Why do they deserve a name?

Field (Vector Space)

Abelian Group

Ring Integral Domain and Modules

...

Group

What is a Group? An object has symmetries: the ways you can act on an
object to get something else (think of changing the sides of a Rubik’s
cube). Notion that you have an object, and you’re doing something to it:
symmetries on the objects or the actions on it.

Forget the object—abstract it away—and instead focus on the actions on that
object.

Field Acts on Vector Spaces.

Suppose we have a system of 79 linear equations, with 26 unknowns, and there
is only one solution that contains π.

3a+ 4b− 3c+ ..+ 8z = 42
...... = 3

Throughout solving these equations, you’re dividing, subtracting, and adding
integer values, therefore you cannot get π (an irrational number).
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Field is what makes linear algebra work.

Examples: R,Q,C.

Field. A field k is a set with different operations: (k,+ : k×k → k,× : k×k →
k, 0 ∈ k, ∃−a s.t. a+−a = 0, 1 ∈ k s.t. 1×a = a, associativity,multiplicative inverse, 1 ̸=
0). This is a field: a set with many operations defined on it.

Does not need order or completeness (can have an ordered field, but rational
numbers are not complete).

2 September 29

2.1 Administrative.

• Read Prelim, 1.1., 1.7, 2.1

• Sunday at noon is the first online assignment (due by midnight)

• Get on canvas.

2.2 Lecture

Field A field is the data of a set (F,+,×, 0, 1): a set, a binary operation:
F × F → F , binary operation, zero element, and ones element.

Example R,Q,C

Group A group (G, ,̇e) composed of a (set, binary operation G×G → G, and
an element e) such that:

associativity for every x, y, z ∈ G, (xẏ)ż = x(̇yż).

0-element/identity : (e · x) = (x · e) = x

inverse There exists a ∈ G such that a · x = x · a = e. This necessarily
implies the inverse is unique.

Proof. Suppose it is not unique. If a,b satisfy this for a value of x, then
(a · x · b) = a · (x · b) = e · b = a · e, so a = b.

Examples : (R,+, 0)

Abelian Group : A group that is commutative: x · y + y · x.

→ 0 ̸= 1

→ For all a, b, c ∈ F , a(b+ c) = ab+ ac

Example (F,+, 0) is an abelian group,

Example (F\{0},×, 1) is an abelian group.
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→ (R, +, 0) = (R, +) also gives us the notion of “-”.

→ (R\{0},×, 1) also gives us a notion of division.

Example Invertible n × n matrices are a group but not an abelian group as
invertible matrices are not necessarily commutative!

1. GL(n): general linear group over the field R or C. Need to define a
group over a field.

Example Rotating a sphere in 3D is a group but not an abelian group – the
rotations are not commutative: pick a point on the pole and then rotate
about this point. Combine with a different operation to show it is not
commutative.

• Notice: you pick a point on the sphere and look where it goes.

• A group is an action on the points of the sphere.

Claim: G1 × G2 of two abelian groups is an abelian group: where × is the
cartesian product. (g1, g2 where g1 ∈ G1 and g2 ∈ G2. Do coordinate-wise
operations to maintain abelian group structure. All the axioms are inherited
from outer group structure. Claim: (Z\3,+) is the same group as rotations
of a circle by 0, 120, 240. Different ideas, but the group action is the same:
isomorphism between these two groups.

• Sets match up.

• Operations are the same.

• Exists mapping between each object in the set, so that group actions on
each set maintains this mapping.

3 October 9

3.1 Administrative

• Ravi 4-6 PM MWF

3.2 Lecture: Quotient Groups, The Orbit-stabilitizer The-
orem

Definition 1 (Quotient Group). H is a quotient group of G: ϕ : G → H is a
group homomorphism that is surjective onto H.

A subgroup is a group homomorphism that is injective, and and isomorphism
is a group homomorphism that is bijective.

Example 1 (Example of Quotients). • Z → Z/6Z = Z/6
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• R6 → R3 with a full-rank linear transformation.

• GL(n) (n × n) invertible matrix → (via determinant) Rx gives us a real
number [not injective].

• GLR(n) → Rx → {±1,×} [tells us if orientation is is reversed].

Definition 2 (Addition between Group and element). Let G be a group and
g ∈ G. Then g +G is defined as the set {g + g1, g + g2, ....} for all elements in
G.

Definition 3 (Cosets of a Subgroup). H < G and G is an abelian group. Cosets
of H are g +H where g ∈ G (so cosets are subsets of G).

Example 2. Say 6Z < Z. Then 0 + 6Z is a coset, 1 + 6Z is a coset, etc.
R1 → R3: t → (t, 2t, 5t) the cosets are the parallel lines with a scalar shift.
(R+,×) < (R×,×) 1× (R+,×) is a coset, (−1)× (R+,×) is a different coset.

Theorem 1. Given H < G abelian group and g1 + H, g2 + H, then either
g1+H = g2+H or (g1+H)∩ (g2+H) = ∅ because g1−g2 ∈ H or g1−g2 ̸∈ H.

Proof. Suppose g3 ∈ g1 +H and g2 +H. THen g3 = g1 + h1 for some h ∈ H
= g2 + h2. So g1 − g2 = h2 − h1 ∈ H, so they differ by an element of the
subgroup (call it h). That means g1 +H = (g2 + h) +H = g2 +H (because h
is already in our subgroup).

Definition 4. H < G , then cosets of H are G/H (quotient group of H). This
is the set {g +H|g ∈ G} = the cosets of H.

Definition 5 (Orbit). Let H be a group acting on the set A. Define equivalence
relation ∼ on A by a ∼ b ⇐⇒ a = hb for some h ∈ H. For each x ∈ A, the
equivalence class of x under ∼ is called the orbit of x under the action of H.
The orbits under the action of H partition the set A into different equivalence
classes.

For example, rotating a sphere 180 degrees is a group action on a set of points
so that a = hb.

Theorem 2 (Orbit-Stabilizer Theorem). (Abelian group version) Given an
abelian group G acting on a set A and given a ∈ A, orbit(a) ⊂ A. Stab(a) < G.
Claim: cosets of Stab(a) < G: G/Stab(a) are in bijection with orbit(a). This
coset g + Stab(a) ↔ g ◦ a
Proof. g1 ◦a = g2 ◦a ⇐⇒ (g1 = g2)◦a = a: this is a group action can do these
in any order ⇐⇒ g1 − g2 ∈ Stab(a) ⇐⇒ g1 + Stab(a) = g2 + Stab(a).

4 October 11

4.1 Administrative

• Problem Set 2 due 10/20.

• Office hours today 4-6 PM
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4.2 Lecture

Last time: abelian cosets of a subgroup H < G tile (partition) a group and
orbit-stabilizer theorem.

Define a notion of G acting on a set A, and we’ve defined the Stabilizer of a and
the orbit of a for elements a ∈ A. Cosets are of the form g +H ⊂ G. Then the
set of cosets effectively tile G: two cosets are either the same or have 0 overlap.

Orbit stabilizer theorem: g ◦ a (element of the orbit of a) is in bijection with
g + Stab(a). Is a bijection between these two sets: each element is a “set”.
G1 → G2 homomorphism: map of sets preserving group operations
G1 → G2 subgroup: injective map of sets
G1 → G2 quotient group: surjective map of sets
G1 → G2 isomorphism: bijective mapping of sets.
G → G|H or g → g +H is a quotient group.

Z/32Z taken the quotient of 8Z|32Z is Z|8Z because 8Z|32Z is Z|4Z. G1 <
G2 < G3 so G3|G1|G2|G1 = G3|G2

What are the finite abelian groups of the finite groups?

• Z/6 isomorphic to Z/2× Z/3

• Z/100 = Z/4× Z/25 (some isomorphism between these groups)

• Z/60 = Z/3× Z/4× Z/5
This is called the Chinese remainder theorem:
In the problem set, we saw 1 = 4a + 25b via the euclidean algorithm. Given a
number mod 4 and mod 25, can we find a number that satisfies these properties?
Z/mn = Z/m× Z/n if m,n are relatively prime.

Z/k can be factored into its Z/x where x is the prime factor raised to the
appropriate power.
Suppose H < G and this is a finite abelian group. Then |H| is a factor of |G|.
This is Lagrange Theorem. Because you can partition G by cosets of H. The
size of G is the size of H times the number of cosets of H: |G| = |H| × |G|H|.
The quotient group are the individual tiles of the cosets that tile H.
Suppose g ∈ G with binary operation additon. Then 0, g, 2g, 3g, ...0 then we
have a subgroup isomorphic to Z/n when it cycles back to 0. If ord(g) = n,
then ...

Theorem 3. Suppose G is a finite abelian group and g ∈ G. Then ord(g)||G|.
The order of any element of G must divide the cardinality of |G|.
Have to get something that matches up, that means a 0 appeared earlier.
Idea behind factoring finite abelian groups:
G100 = G4 ×G25. Every element of G100 is a factor of 100 (i.e. 2, 5, 10, etc.).
G2 < G is a subgroup of G with elements of power 2n. Let G5 < G be elements
order 5n (only intersection is 1). Will use 1 = 4(−6) + 25(1)

7



5 October 13

5.1 Lecture: Chinese Remainder Theorem, The Isomor-
phism Theorem, and Rings

All theorems discussed today are for Abelian groups. Chinese Remainder
Theorem: Z/paqbrc → Z/pa × Z/qb × Z/rc if n = paqbrc prime factorization.
Main idea: if |G| is a group of size paqbrc then it is isomorphic to Gp×Gq×Gr.
More generally (from the integers), you can break a finite abelian group into
pieces.
Once you define abelian groups, what are the finite abelian groups? Can define
the finite groups, and then realize you can take products between abelian groups
to develop more finite abelian groups.
Z/mn is a group but not a field: if m = 2, n = 3, then 2 · 3 = 0 which violates
the definition of a field as two non-zero elements multiplied together are 0.

The Isomorphism Theorem: Given a group homomorphism ϕ : G → H of
an abelian group. ker(ϕ) < G. Then G|ker(ϕ) ↔ image of ϕ (isomorphism to
the image of ϕ). [Also G “mod” the kernel equivalent to the quotient group].
Proof. Orbit-stabilizer theorem. G is acting on H: know e the identity is in H.
Orbit of e under the action of G is the image of ϕ that is G|stab(G) that is the
kernel.

Action of G on H: g ◦ h = ϕ(g)h, so g ◦ e = ϕ(g)e = ϕ(g) as e is the identity,
and this is the definition of the image. Kernel of ϕ is the stabilizer of G.
g ◦ h is function composition between g ∈ G and h ∈ H which is the group
action ϕ(g) applied to elements of h: ϕ(g)h where this is multiplication.
Example. Z → Z/6 via ϕ. Then ker(ϕ) = 6, so Z|6Z is the image of this map:
Z/6.
The 3rd isomorphism theorem: [for abelian groups] J < H < G, abelian.
(G|J)|(H|J) = G|H.
The 4th isomorphism theorem: [Lattice] Isomorphism Theorem: G is an abelian
group. Let H < G. Then you can form a lattice of subgroups. Then all the
subgroups of G|H correspond to all of the subgroups containing H: i.e. the
groups in the lattice between G and H.
2Z|8Z are the even numbers mod 8.

6 October 16

6.1 Announcements

1. Online assignment # 3 due Sunday at noon.

2. Writing in major topic: why you can’t double the

3. Read Chapter 7
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6.2 Lecture

Important Recent Ideas “Cosets tile the group.” g1 + H = g2 + H ⇐⇒
g1− g2 ∈ H g1+H ∩ g2+H = ∅ ⇐⇒ g1− g2 ̸∈ H “Orbit Stabilizer Theorem”:
Orbit: group acting on a set, and an element of the set. An “orbit” is the set
all the points that the point go to under a group action. G|Stab(a) ↔ orbit(a)
g + Stab(a) ⇐⇒ g ◦ a

“First Isomorphic Theorem ϕ : G → H” G|ker(ϕ) ⇐⇒ im(ϕ)
g + ker(ϕ) ⇐⇒ ϕ(g)

“Third Isomorphic Theorem: K < H < G”
(G|K)|(H|K) → G|H

“Fourth Isomorphic Theorem: H < G
Subgroups of G containing H ⇐⇒ subgroups of G|H.

Understand and be able to replicate the proofs for each of these!

Theorem 4 (Second Isomorphism Theorem). G is abelian, A < G and B < G.
Then A∩B < G and A+B < G where A+B := {a+b|a ∈ A, b ∈ B}. (A+B)|B
is isomorphic to A|(A ∩B)

Example: Z, 2Z, 3Z, 6Z where A = 2Z (even integers), B = 3Z (odd integers),
A ∩ B = 6Z and A + B = Z. Proof. Consider ϕ : A → (A + B)|B and
a → a+B. Is this map ϕ surjective? Yes: a′ + b′ +B ∈ (A+B)|B and a′ +B.
a+B = 0+B is the kernel of A∩B. Just use the First isomorphic theorem on
ϕ : A → (A+B)|B and then show the kernel of this map is (A ∩B).
Why is it that ϕ is surjective? a + B = a1 + b1 + B ⇒ a1 + b1 − a ∈ B and
a1 = a makes this true!

Reality Check:
G is an abelian group and g ∈ G. < g > subgroup generated by g with
< g >= .. − 2g,−g, 0, g, 2g, ... cyclic subgroup. If g is finite, then 0, g, 2g, ..., 0
where this span is the order of g which is the order of the subgroup generated
by g: | < g > |. < g >= Z|(| < g > |Z).

Lagrange Theorem: Order of g — |G|. And moreover if ord(g) = 6, ord(2g) = 3,
ord(3g) = 2.

Motivating example: Z|6Z → Z|2Z× Z|6Z

Theorem 5 (Chinese Remainder Theorem for Finite Abelian Groups). Suppose
G is a finite abelian group with order ab so that a, b are relatively prime. Then
we can find integers x, y ∈ Z such that ax+ by = 1. Let Ga ⊂ G those elements
G with ag = 0 with a ∈ Z and g ∈ G. The elements of G where we add to
itself a times and the results is 0. Observe that this is a subgroup: Ga < G. and
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Gb < G. The order of any element of Ga is a factor of a. Consider g ∈ Ga∩Gb,
then g = e because a, b relatively prime.

ϕ : Ga ×Gb → G. (g1, g2) → g1 + g2. What is the kernel of ϕ? g1 + g2 = 0 so
g1 = −g2 Therefore, must be the identity: g1 = g2 = 0.

Claim: ϕ is surjective. For any element g ∈ G, g = g1 + g2 where g1 ∈ Ga and
g2 ∈ G2.

g = 1 · g = (ax+ by)g = a(xg) + b(yg) = b(yg) + a(xg).

Then by the first isomorphic theorem, Ga × Gb → G because the kernel is the
identity.

6.3 October 23

6.4 Administrative

1. Midterm on Monday.

2. Midterm in class (shorter).

3. Nov. 10: writing in the major assignment [will be on canvas].

4. Final version due after Thanksgiving on week 9-10.

5. Feedback after Nov. 10 draft [highly recommend].

Writing in the major assignment: Straight edge + compass ⇒ reduced it to if
you start with two points on the plane, and then make a coordinate system, and
then start constructing points, what points can you construct? Know exactly
which points on the plane you can construct: (a, b) such that a, b ∈ K, the field
of constructable numbers. K is the smallest subfield of the real numbers that
is closed under square roots.

K :=smallest subfield of R closed under square roots.

Want to show the following things: cos 20, 2 3
√
2,

√
π ̸∈ K. Trisecting an angle,

doubling a circle, not in K.

Warmups:
√
7 is not rational. Assume it is rational:

√
7 = u

v such that u, v
relatively prime. 7v2 = u2 therefore 7|u → 7|v.

Another way x2 − 7 = 0 u
v
2 − 7 = 0 ⇒ u2 = 7v2 so u = ±1,±7 and v = ±1,

plug these in and none work.
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If u, v ∈ Q and u + v
√
7 = 0, then

√
7 = −u

v is rational, so this can’t happen
(unless v, u = 0 because you can’t divide by 0).

3) u+ v
√
7 = u − v

√
7. Question: u + v

√
7 where u, v ∈ Q, and Q(

√
7) =

{u+ v
√
7|u, v ∈ Q} ⊂ R. Claim: is a field.

Missing: multiplicative inverse. 2+
√
7

3+19
√
7
=?+?

√
7 if it is a field. Solve by multi-

plying by 1 (complex conjugate). Don’t need to show that it has a zero divisor
since ab = 0 = a−1ab = 0 ⇒ b = 0

Conjugation : Q(
√
7) ∼= Q(

√
7) conjugation gives an isomorphism of a field with

itself. Only works when you have the square root of something not in your field,
but the number in the square root in in your field:

√
4 or π don’t work.

New field: Q(
√
5,
√
7,
√
1 +

√
5). Already it’s in the field Q(

√
5,
√
7), or it’s a

bigger field containing all of Q(
√
5,
√
7,
√
1 +

√
5).

Q(
√
5,
√
7) contains Q(

√
5),Q(

√
7),Q(

√
35).

Fact: cos 20 is a root of x3 − 3
4x− 1

8 = 0.
cos 20 is not rational because if it were 8x3 − 6x − 1 = 0 , and if x = u

v u, v
relatively prime, then plugging in this value into the equation would give us
8u3 − 6uv2 = v3, and therefore, u = ±1 must be a factor of both left and right
side. Similarly, 8u3 + v3 + 6uv2, so v is a factor of both the left and right side,
so v = ±1 or ±2. Therefore, no solution in Q.

Maybe, there is a solution that looks like a + b
√
7 a root? Maybe there is a

solution like this with ak, b ∈ Q. Then when you plug in a + b
√
7 into x, you

get 0. And you can flip the signs of the a+ b
√
7 ⇒ a− b

√
7 to get another root!

And it’s different because b ̸= 0. So now you’ve found two roots, but the final
root is −2a, a rational number, therefore no solution.

Also no solution a + b
√
5 where a, b ∈ Q(

√
7). No root when you add root 7,

root 5, so on and so forth. No root where you have finitely many square roots
in it. Therefore, you cannot write cos 20 so you can’t trisect an angle. Same
proof shows you can’t double a ....

π is transcedental, and anything you can construct is a polynomial. Hard sep-
arate fact.

7 October 25

7.1 Administrative

1. Midterm on Monday.
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2. WIM: two deadlines. First deadline; Nov. 10 [bonus office hours are after
the midterm].

7.2 Lecture: Return to Rings

Definition 6 (Ring). (R,+, 0,×,−): a set with a binary operation + that
gives it the structure of the abelian group with 0 as an identity. Moreover, ×
is a second binary operation that is commutative with multiplicative identity 1.
Moreover, the distributive law holds. This definition differs from the course
textbook.

Ring homomorphism: ϕ : R → S as well as an isomorphism (bijection).
Quotient ring: ϕ : R → S surjection.
Subring ϕ : R → S injection. [Our subrings need a 1 because our ring has a 1
vs. textbook does not require a 1].

Integral domain: If xy = 0, then x = 0 or y = 0 [no zero divisors].

Example 3 (Examples of Rings). 1. Q(i) ⊂ C := {a+ bi|a, b ∈ Q}. In fact,
this forms an integral domain ⇒ field.

2. Z[i] ⊂ C = {a+ bi|a, b ∈ Z} is also a ring.

3. Z[π] = {a0 + a1π + ... + anπ
n|a0, ..., an ∈ Z} ⊂ R. π is transcedental, so

0 polynonial is all zeros. ∼= Z[t] [all polynomials with integer coefficients].

Given ϕ : R → S ring homomorphism. Define Im(ϕ) ⊂ R is a ring. Z[t] → R
has an image that is a ring.

kernel(ϕ) ⊂ R where ker(ϕ) := ϕ−1(0) ⊂ R. This is (in general) not a subring:
1 ̸∈ ker(ϕ) in general. But the kernel is a subgroup: (kerϕ,+, 0).

Example 4 (Examples of Ring Homomorphisms). 1. Z[t] → R and t → π.
kerϕ = 0

2. Z[t] → R and t →
√
2

3. Z → Z/6Z R[x] → R n → n mod 6. kerϕ = 6Z [multiples of 6].

4. R[x] → R with f(x) → f(y). 0 ∈ ker(ϕ), {(x − 1)f(x)} = kerϕ —
anything of the form (x− 1)f(x) is in the kernel.

5. R[x, y] → R with f(x, y) → f(0, 0) kerϕ = 0+?x+?y.

Definition 7 (Ideal). Every kernel I = kerϕ has the following 2 properties:
I ⊂ R is an ideal of R if (1) (I,+, 0) is an abelian subgroup of (R,+, 0) (2) For
every element x ∈ I, a ∈ R, a× x ∈ I: aI ⊂ I – multiply any element in ideal

12



by an element in your ring, and that element is in the ideal.

For example, any multiple of 6 multiplied by any other integer remains an integer
of 6.

Claim: Given a ring homomorphism, and given x ∈ R with ϕ(x) = 0, and
a ∈ R, then ϕ(ax) = 0.
Proof: ϕ(ax) = ϕ(a)ϕ(x) = ϕ(a)0 = 0.
Moreover, any ideal is a kernel.

If I ⊂ R is an ideal, then you can “quotient” by I. Define the quotient ring:
R/I. Given (R, 0,+,×, 1), we are going to produce something new R/I.

I is a subgroup of R, so (R/I, 0,+) is a subgroup. Then the questions are what
to multiply and what the unit is.

Multiplication is defined by (x + I)(y + I) = (xy + I). Is it well-defined?
x+ I = x′ + I and y+ I = y′ + I, is it true that xy+ I = x′y′ + I? If x−x′ ∈ I
and y − y′ ∈ I, is it true that xy − x′y′ ∈ I?

x− x′ = i ∈ I and y − y′ = j ∈ I, is it true that xy − x′y′ ∈ I? xy − x′y′ ∈ I?
xy − x′y + x′y − x′y′ = (x − x′)y + x(y − y′) = iy + xj ∈ I because anything
times the ideal is in the ideal.

8 October 27

Midterm: Goes until 7.3: quotienting by ideals. Know the isomorphism the-
orems and how to use them. First isomorphism theorem is special case of
orbit-stabilizer theorem. Also know the chinese remainder theorem for abelian
groups, and know why it’s true.

Chinese remainder theorem: for abelian groups, Z/6 → Z/6× Z/3.
There will be a trivial euclidean algorithm question. Will not be asked to know
the constructable things. Section 4.1: permutations is not really necessary.Do
not need non-abelian groups: like normal subgroups. No reference sheet on the
midterm: know orbit-stabilizer, subgroup test, etc. Will need to know about
polynomial rings.

Last time: I ⊂ R and S quotient rings that correspond to each other. Ring
mod an ideal is a quotient ring. A map from a ring to a quotient ring has a
kenrel that is an ideal.

First isomorphism theorem: ϕ : R → S. Then R/kerϕ ∼= imϕ with isomorphism
r + kerϕ ⇐⇒ ϕ(r).
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Fourth Iso Theorem for Rings: can make a diagram of ideals for the ideals in a
ring. If you write the corresponding ideals of R/I, then all the ideals between
R and I will match perfectly with the lattice structure between R/I and 0. In
particualr, if there is an ideal J between R and I, there is a quotient group
J/I between R/I and 0. In particular, R/J ∼= (R/I)/(J/I). You can quotient
groups by subgroups, but you can’t necessarily quotient rings by subrings.

Field of Fractions: Suppose R is an integral domain (i.e. Z,R[x], etc.). Con-
sider a

b with b ̸= 0 for any two elements in our integral domain. Then define
equivalence a

b = c
d if ad − bc = 0. Define Fraction Field of a ring FF (R) = a

b
with b ̸= 0 and a

b = c
d if ad− bc = 0.

Several things to worry about: if a
b = c

d = e
f then is a

b = e
f , is af = be? Can

use integral domain to show this rigorously.

We also need to show its a field.
Define a

b ×
c
d = .., a

b +
c
d = ... and verify these are well-defined for a field. Verify

1 sits inside the Fraction Field, and 1 ̸= 0 because in our integral domain 1 ̸= 0.
We can also invert: a

b = 0
1 ⇐⇒ a = 0. To make all this work, there’s things

that we need to check (but we don’t need lowest terms!!).

9 November 1

Ideals: I, J ⊂ R, then I ∩ J is an ideal where I, J is an ideal and R is a ring.

However; I ∪ J is not necessarily an ideal. Example: multiple of 2 and multiple
of 3 2Z and 3Z, but the union of these two sets is not an ideal. This is not
closed under addition as we can take 2 from 2Z and 3 from 3Z, but 5 ̸∈ 2Z∪3Z.

Generated ideal: x ∈ R, (x) is an ideal = {rx} ⊂ R. Similarly, an ideal can
be generated by finitely many things: (a1, ..., an) = {r1a1 + ...+ rnan ∈ R}.

I + J is an ideal, but it’s unclear if you can take an arbitrary sum.

Definition 8. (ai)i∈S = {r1a1 + r2a + 2 + .... where ri ∈ R} where almost all
coefficients are zero (all but finitely many coefficients are zero). Only finitely
many sums are allowed because of our definition. Want an ideal that contains
every ai: take all ideals that contain ai and then intersect them all: this is an
ideal.
Two equivalent: have a bunch of generators {ai} ⊂ R. Consider all ideals
containing {ai}. Then take the intersection of all the ideals containing {ai} is
an ideal: ∩I.

Definition 9 (Prime Ideal). An ideal P ⊂ R is prime if R/P is an integral
domain.

14



If x, y ∈ R/P and xy = 0 in R/P , then either x or y is 0 in R/P . In the book,
this is equivalently written as if xy ∈ P , then x ∈ P or y ∈ P .

Definition 10 (Maximal Ideal). An ideal M ⊂ R is maximal if R/M is a field
if and only if M ̸= R and there does not exist an ideal Z M ⊂ Z ⊂ R [no ideal
in between M and R).

⇒ k = R/M is a field. Ideals of k are k and (0). Then by the fourth isomor-
phism theorem, then there are no ideals between M and R.

⇐ if S = R/M has no ideals, other than S and 0, why is it a field? Note that
S ̸= 0. Need to check that everything besides 0 is invertible to verify S is a field.

Question: if a ∈ S, a ̸= 0, how do you know that a is invertible? How do you
know that there is some multiple of a, s ∈ S such that sa = 1. How do you
know that 1 is a multiple of a: 1 ∈ (a)?

Aside: Every ring R ̸= 0 has a maximum ideal. This is equivalent to the axiom
of choice.

Axiom of Choice: [also known as Zorn’s Lemma].

Integral domain / Field: A new field! Elements are ordered pairs of integers
(a, b) ∈ Z such that b ̸= 0 and (a, b) = (c, d) if ad = bc [two points are the same
if there’s a line through the origin connecting them].

Declare 0 ∈ F to be the vertical line: (0, a) for a ∈ Z.

Declare 1 ∈ F to be (1, 1) = (2, 2) = (a, a) for any a ̸= 0: the perfectly diagonal
line in Z× Z.

Define addition: (a, b) + (c, d) = (ad+ bc, bd)
Define multiplication (a, b)× (c, d) = (ac, bd)

As a check, we need to ensure two elements from the same equivalence class
yield identical results as (1, 1) = (7, 7). Need to check if (a, b) = (a′, b′) then
(ad+ bc, bd) = (a′d+ b′c, b′d).

Clearly, this is (a, b) = a
b and F = Q. Therefore, the rational numbers do indeed

form a field. We really didn’t use much about the integers to make this work.

More generally, a, b ∈ Z, b ̸= 0, a, b ∈ an integral domain, b ̸= 0. Then this
will still work if in an integral domain rather than Z.

Even more generally a, b ∈ R integral domain, then b ∈ S S ⊂ R that is
closed under multiplication.
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Example: R = Z, S = {1, 2, 22, ...}. Fractions with denominators a power of 2.
Also all non-zero integers that are odd: S = {1, 3, 5, 7...}.
Covered everything up to 7.5, and we’ve already done the Chinese Remainder
Theorem.

10 November 3

Chinese Remainder Theorem: Z/6Z ∼= Z/2Z× Z/3Z (rings).

What’s in common? gcd(2, 3) = 1 so ∃a, b ∈ Z such that 2a+ 3b = 1. Can also
say this in terms of ideals: the ideal generated by 2,3 is the unit ideal Z and
2Z+ 3Z = Z. These three statements are equivalent.

More generally, want to do this with an arbitrary ring R.

Definition 11. R ring, I, J ⊂ R ideals. We say I and J are comaximal if
I + J = R ⇐⇒ ∃i ∈ I, j ∈ J such that i+ j = 1.

Proposition 1. If I, J ⊂ R are comaximal, then IJ = I ∩ J

Proof:
(⇒) IJ = (ij) the ideal generated by elements in the first ideal times ele-
ments in the second ideal. i.e. R = R[x, y], I = (x, y) and J = (x2, y), then
IJ = (x3, x2y, xy, y2).

Take any a ∈ I and b ∈ J , then ab ∈ I ∩ J .

(⇐) take c ∈ I∩J . c = (i+j)c because (i+j) = 1 for some i, j, and ic+cj ∈ IJ
as ic ∈ I and cj ∈ J .

Theorem 6 (Chinese Remainder Theorem for 2 ideals). R is a ring. I, J are
co-maximal ideals.
R/(IJ) ∼= R/(I ∩ J) ∼= R/I ×R/J

Proof: Consider the ring homomorphism: ϕ : R → R/I × R/J by the first
isomorphism theorem. R/kerϕ ∼= imϕ. The kernel of ϕ = I ∩ J . Image is all of
R/I ×R/J as ϕ is surjective.

Claim R → R/I ×R/J is surjective: given any s+ I and t+ J , s, t ∈ R. Then
ϕ() = (s+ I, t+ J) for some input of ϕ. and that input is (js+ ti) as (js+ ti)
mod I = (js+ ti+ is) = s(i+ j). Therefore, this is surjective.

Theorem 7 (CRT (3 ideals)). R is a ring. I, J,K are ideals that are pair-wise
co-maximal.

R/(IJK) ∼= R/(I ∩ J ∩K) ∼= R/I ×R/J ×R/K.
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Proof: Use 2-ideal case: R/IJ ∼= R/(I ∩ J) = R/I × R/J . All you need to
show is that IJ + K = R or I ∩ J + K = R. Which means that R/IJK ∼=
R/IJ ×R/K ∼= R/I ×R/J ×R/K.

Claim: Suppose I + J = R, I + K = R, J + K = R. Then WTS either
IJ+K = R or I ∩J+K = R (actually the same). I+J = R, ... ⇒ i1+ j1 = 1,
... i2 + k2 = 1 and j3 + k3 = 1. Therefore, i1 + j1 − (i2 + k2) + j3 + k3 = 1
Therefore, (i1 − i2) + (j1 + j3) + (k3 − k2) = 1. So something in I + something
in J + something in K = 1.

Corollary 1. (Z/100)× ∼= (Z/4)× × (Z/25)×
(R/IJ)× ∼= (R/I)× × (R/J)×

11 November 6

Last Time Rings. Now we’re finishing Chaper 7 completely. There
are several main concepts including the Chinese Remainder theorem
for Rings.

Know about the unique factorization of positive integers: a positive integer that
is not 1 can be factored uniquely into primes. Why is that true? Once we say
this correctly, we will have a better view. This concept generalizes to arbitrary
algebraic structures.

Euclidean Algorithm [Generalized to non-integers] Suppose we have a ring
R (i.e. Z) that is an integral domain: xy = 0 ⇐⇒ x = 0 or y = 0. You also
have k[t] polynomials over a field as an integral domain.

We also have a notion of size: R\{0} → Z.
Z → Z via x → |x|
k[t] → Z via p(t) → deg(p(t)).

Given any a, b ∈ R and b ̸= 0, then a = qb+r wiht q, r ∈ R and |r| < |b|. Where
|b| is ...

For Z: ax+ by = d where d is the “smallest”.

Ideal(a, b) ⊂ R, (a, b) = d where d = gcd(a, b).

Polynomials: k[t]: how to divide one polynomial by another and get a quotient
(long division of polynomials.

Need: Euclidean norm: |R| → Z≥0 via the {} map where |r| < |b| in Euclidean
Algorithm.
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Euclidean Domain: The thing you need for this to work.

Def of Norm: |xy| = |x||y|.
Another Example: [Gaussian Integers] a+bi where a, b ∈ Z. |a+ bi| = a2+b2.

What is q? If you have α, β ∈ Z[i], how to find q, r? Q(i) : c+di where c, d ∈ Q
with Q as a field. Consider α

β = c + di. Take q ∈ Z[i] with |q − α
β | ≤

1√
2
, so

r = α− qβ ∈ Z[i]. Hope is that |r| < |β|. |r| = |α− qβ| < |β|.

Consider α, β ∈ Z[i], with β ̸= 0, then α = qβ+r where q, r ∈ Z[i] and |r| < |β|.

gcd(10+3i, 14− i) allows you to fin the gcd of these values: (3+ i)+(−1)(3) = i
but can massage this to get to 1 because they differ by a unit: (multiply by i3).

Two elements of a ring are associates if x = unit×y or equivalently y = unit×x
or equivalently (x) = (y) [ideal generated by x is equal to the ideal generated
by y] ⇒ x = uy where u is a unit. Similarly y = vx where v is a unit. Therefore
x = uvx so uvx − x = 0 and x(uv − 1) = 0 and x ̸= 0 as we’re in an integral
domain so uv = 1.

Midterm Stats:
Out of 50 [maximum possible socre].
≤ 20: How to spend your time to improve.
≥ 20: doing fine-well.
≥ 25: really good.
≥ 30: fantastic.
Question 5: Tough
Look at what you understand, look at what you didn’t understand. Learn the
lessons + understand the cases as well.

12 November 10

Euclidean Algorithms
Integral domains R. N : R → Z≥0.
Positive norm: Euclidean algorithm a = qb+ r where r is smaller than b.
Claim: Euclidean Domains ⇒ Principal Ideal Domains. Every ideal is princi-
pal. Proof: I ⊂ R. If there is a non-zero element. Take an element of smallest
non-zero norm.

Claim: I = (b) (ideal is generated by b). I = (b) → (b) ⊂ (b).

If a ∈ I, a = qb+ r.

Unique Factorization: Let R be an integral domain. r ∈ R could be 0 or a
unit u: (u) = R exists, then uv = 1.
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If r is not 0 or a unit, say r is irreducible. If whenever r = st, then s or t is a
unit. i.e. 5 ∈ Z or −5 ∈ Z.

Every element of the ring is irreducible or reducible.

Definition 12 (prime). r is prime if (r) is a prime ideal.

This is not the same thing as irreducible. For example, −5 ∈ Z is prime.
If xy ∈ (r), then x ∈ (r) or y ∈ (r). Can’t prove that one implies the other in a
general integral domain.

Definition 13. r,s are associates if r = unit× s or equivalently (r) = (s).

Claim: If p is prime, then p is irreducible. p ∈ R integral domain. Proof: (p)
is a prime ideal. p = ab. Goal a or b is a unit.
a, b ∈ (p), so a ∈ (p) or b ∈ (p). Say a ∈ (p). a = kp. p = kpb ⇐⇒ kpb− p = 0
so p(kb− 1) = 0. Because we’re in an integral domain kb = 1.

Note: In a pid (principal ideal domain), irreducibles are prime. Proof: Suppose
r is irreducible. If r = ab, then a or b is a unit.

Suppose ab ∈ (r). Why is a ∈ (r) or b ∈ (r)? i.e. ab = kr.

Why can you write that a is a multiple of r or b is a multiple of r?

Define: Unique factorization domain.
Suppose R is an integral domain. We say R is a unique factorization domain if
for every element r ∈ R, r ̸= 0 or a unit, can write r = p1 × p2 × .. × pn the
product of primes in R where n is finite.

For any other prime factorization, r = q1×q2× ...×qn, then m = n, but pi ̸= qi
necessarily (i.e. 6 = 2×3 = (−2)×(−3)). The products are the same up to units.

Examples without unique factorization Z[2
√
3] = Z[

√
12] = a+ b

√
12

(a+ b
√
12)(a− b

√
12) = a2 − 12b2.√

12×
√
12 = 12 = 2× 2× 3.

R[w, x, y, z]/(wz − xy) is an integral domain. wz = xy in this integral domain.

xn + yn = zn has no solution in the integers?
Would love to factor this: xn = zn − yn. If n = 2, then difference of squares.

Z[ζ] nth root of 1.
xn = (z − y)(z − ζy) · ·(z − ζn−1y). Is this a unique factorization domain?
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Every prime number is irreducible because you can only factor it into itself (in
a unique factorization domain).

In a principal ideal domain, every prime is irreducible (and this is also the case
in a unique facotrization domain).

WTS: every euclidean domain is a principal ideal domain and every principal
ideal domain is a unique facotrization domain.

Fields are examples of Euclidean domains which are examples of PIDs⊆ UFD ⊆
Integraldomain ⊂ Rings.

Theorem 8. Suppose R is a principal ideal domain. Then R is a unique fac-
torization domain.

Proof: Suppose r ∈ R and r is not 0 or a unit. First goal: find a factorization.
r = r1r2 = r1.... to factorize. So what can go wrong? How do you know it
terminates if you have no notion of size? (r) ⊂ (r2) ⊂ (r4) ⊆ (r6) ⊆ .. In other
words, r is a multiple of r2, r2 is a multiple of r4, ...

Consider the union ∪(r2n). An element of this union is a multiple of rkn for
some k even. The trick is that Emmy Noether: this is an ideal, and every ideal
is principal, so it’s generated by a single element (s). So (s) is in r2n for some
n. THe ideals can’t get any bigger once you reach a certain step.

13 November 13

Groups in General: [Chapter 2]
(G, ·, e) where G is a set, · is a binary operation, and e is an identity element.
· is associative. ∀x ∈ G, x · e = x. ∃y ∈ G such that ∀x ∈ y, y · x = x · y = e.
this left inverse is equal to the right inverse.

(x · y)−1 = y−1 · x−1. Need to check: (x · y)−1 · (y−1x−1) and then rearrange
parentheses.

Examples of non-abelian groups: GLn(F ).

Symmetric Group: Sn on n numbers. [Permutation group]. What is an element
of the permutation group? How do you describe the elements and how do you
multiply them?

Consider S5: π is a permutation on 5 elements. How to compose them? The
following definition is a communal choice: π1(π2(x)) apply π2 first. Can write
this in cycle notation for the elements of the group: (1)(2, 4)(3)(5) [2 goes to
4] or simply write the elements that change for simplicity (2, 4). Or for S100
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g = (3, 9, 1, 0)(2, 4, 8, 7)(x).

(12) · (13) = (132) and (13) · (12) = (123).

S3000(12)(13) = (132) = (321) 1 goes to 3, 3 goes to 2. First function sends 1
to 3 and second function keeps 3 put. Second function sends 1 to 2. So if we
start with 1 we have: 1− > 3 followed by 3− > 3 and then 3− > 1 and finally
1− > 2 if we continue to apply this to elements to get a cycle. Therefore the
full thing is (132).

Composition of Symmetric groups: (2, 3, 7, 9)(10, 1, 8) is equivalent to (1, 8, 10)(2, 3, 7, 9).
What is the inverse? g−1 = (10, 8, 1)(9, 7, 3, 2).

(12)(345) = g−1 and (12)(543) = g.
g−1(2598)(67)(1, 11)g: this is called conjugating by g.
starting at 1 we get (1398)(2, 11)(4)(5)(67)(2, 11).

The patter is to simply apply elements on the left cycle to things in the middle.
i.e. (132)(98)(1547, 10)g =¿ (35479)?
Now know how to do g−1σg or in matrix notation: M−1NM . Alternatively:
gσg−1 and MNM−1 [change of basis]. Change of basis is conjugation.

14 November 15

Today: Group actions, normal subgroups, quotients, orbit-stabilizer, First-
Isomorphism theorem.

Dihedral Group: The symmetries of a regular n-gon. D2n, or D10 as the
symmetries of a pentagon. You can rotate it or you can flip it. If you label the
vertices 1−5 for a pentagon, then D10 < S5, and we can selectively permute the
vertices with rotations or flips of the vertices. This group has size 2n because
there are n rotations and 2 reflections for each rotation.

r, s generate D2n where r = (12345) and s = (25)(34). So composing r and s
allow us to compose this gorup (i.e. any rotation and/or reflection).

For instance: s, sr, ..., srn−1, e, r, r2, ..., rn−1 are the 10 elements of the group,
and any composition of them maps back to one of these elements.

Example: rs = sr−1 [see this geometrically]. and srs−1 = rk, s2 = e and
rn = e. The generators r, s satisfy these relationships. Claim: using any set of
s, r, we can turn it into one of the 10 unique combinations of r and s. Groups
often have these nice relations from which you can get everything.
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Subgroups and Cosets. H < G, we can have left cosests or right cosets. gH
is not necessarily Hg.

Example: G = S3 and H = {e, 112)}. (23)H = {(23), (23)(121)} and H(23) =
{(23), (12)(23)}.

Set of left coset is denoted as G/H and set of right coset is denoted as H G.

Theorem 9. Suppose H < G and g1, g2 ∈ G. Then it could be that g1H = g2H
or g1H ∩ g2H = ∅. Must tile the group – no overlap.
Further, g1H = g2H ⇐⇒ g−1

1 , g2 ∈ H xor g−1
1 g2 ̸∈ H.

g1H = g2H if these are completely the same subset, then g−1
1 g1H = H =

g−1
1 g2H, so these two are the same subsets of G. e ∈ H, so g−1

1 g2e ∈ H and
g−1
1 g2 ∈ H.

Suppose g1H ∩ g2H = ∅. Then H ∩ g−1
1 g2H = ∅ but e ∈ H, so so g−1

1 g2 ∈
g−1
1 g2H, so g−1

1 g2 ̸∈ H.

Now suppose x ∈ g1H ∩ g2H. Then x = g1h1 for some h1 ∈ H and x = g2h2

for some h2 ∈ H. Then g−1
1 g2 = h1h

−1
2 ∈ H.

Corollary 2. The left cosets tile the group. The right cosets tile the group in
a different way.

If |G| is finite. Then |G| = |H|/|G/H|

Corollary 3 (Lagrange’s theorem.). |G| = |H|/|G/H|. |G/H| is called the
index of the subgroup. Moreover, any group of size p prime is isomorphic to
Z/p.

Group Actions G acting on a set A.
New axioms! Same thing as a group homormorphism from ϕ : G → SA. When-
ever you have a group action, this is equivalent to a group homomorphism
mapping g to elements of the permutation group Sa. One group action per-
mutes the elements in the set in some way/shape/or form.

Could not say this before because SA is the symmetric group: the group of
permutations on the set (and the set may not be finite).

15 November 17

Tiling Theorem. H < G. g1, g2 ∈ G. Then either g1H = g2H or g1H∩g2H =
∅. This is equivalent to either g−1

1 g2 ∈ H or g−1
1 g2 ̸∈ H.
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Group Action. Group G acting on a set A. The kernel of the action is
equivalent to the kernel of the group homomorphism: ϕ : G → SA kerϕ.
Orbit-Stabilizer Theorem. Group G acting on a set A. So we immediately
have a homomorphism ϕ : G → SA.

There is a bijection G/Stab(a) with orbit(a) given by g(Stab(a)) ⇐⇒ g ◦ a.
Proof. Perhaps [two cosets of Stab a] g1Staba = g2Staba ... = g1 ◦ a = g2 ◦ a
⇐⇒ g−1

1 g2 ∈ Staba ⇐⇒ (g−1
1 g2) ◦ a = a ⇐⇒ (g−1

1 ) ◦ (g2 ◦ a) = a
⇐⇒ (g1)(g

−1) ◦ g2a ⇐⇒ g2 ◦ a = g1 ◦ a.

Group Surjection Subgroups: kerϕ : G → H via ϕ. N → G. Can I make
G → H?

Given: kerϕ: G → H via b. G/kerϕ.

More generally, given G → H between groups with ϕ, kerϕ is a subgroup. G is
a action on H. G×H → H. (g, h) → ϕ(g)h.

G acting on H. orbit(eH) [orbit of the identity of H] is the image of ϕ. What’s
the stabilizer of e? What are the elements of g that send e to e. The kernel of
ϕ is the stabilizer of e: ker(ϕ) = Stab(eH) = {g ∈ G|g ◦ eH = eH}.
Given any group homomorphism, you get an action of G on H (where the action
of G on the set of H).
Orbit stabilizer. Bijection of sets with G/kerϕ ⇐⇒ imϕ. In particular,
g(kerϕ) ⇐⇒ ϕ(g).

What is the group structure onG/kerϕ? Want g1(kerϕ)·g2(kerϕ) = g1g2(kerϕ).
Want to define a group structure on the quotient set. Once we answer this, we
have the first iso theorem.
Given H < G, want a group structure on G/H.

Important Definition [new thing]: We say a subgroup N < G is normal
[i.e. quotientable] if for all pairs of elements g ∈ G; gN = Ng [left coset is equal
to the right coset]. Equivalent to gNg−1 = N . Equivalently, for all n ∈ N ,
gng−1 ∈ N .
Write this as N ◁ G.

Example: G = S3 [smallest non-abelian group]. H = {e, (12)} is a two-element
non-normal subgroup. Consider (123): (123)H = {(123), (13)}. Also consider
H(123) = {(123), (12)(123) = (1)(23)}.

Moreover, find g such that g(12) ̸= (1, 2)g. or equivalently g(12)g−1 ̸= (12).

Subgroups that are normal: {e} and H = G and H = {e, (123), (132)}. Last
one has 2 cosets in G. Index 2 thing is automatically normal.

23



For any g, gHg−1 = H. If you take any element of the group, g(123)g−1 ∈ H
will be a 3-cycle in H. Changes the numbers but keep the cycle number the
same.
Example: Suppose ϕ : G → H is any group homomorphis. Claim: kerϕ is
normal.
For any elements of the group and any element of the kernel, g ∈ G, g ∈ kerϕ,
gng−1 ∈ kerϕ. i.e. ϕ(gng−1) = eH . You do i.e. ϕ(g)ϕ(n)ϕ(g−1) = eH where
ϕ(n) = eH . So ϕ(g)ϕ(gn−1) = eH . So kernels are normals.

Theorem 10. Suppose N ◁G. Then the following is a group structure on G/N :
(g1N)(g2N) = (g1g2)N

Proof: g1N is a subset of G, and g2N is another subset of G. And if you multiply
them in all possible ways you get (g1g2)N . If g1N = g′1N and g2N = g′2N is
g1g2N = g′1g

′
2N , if so we win (well-defined).

g1N = g′1N → g−1
1 g′1 ∈ N and g−1

2 g′2 ∈ N , is it true that (g1g2)
−1(g′1g

′
2) ∈ N?

i.e. g−1
2 g−1

1 g′1g
′
2 ∈ N? We know g−1

1 g′1 ∈ N . And because N is normal, all the
conjugates are in N (and left and right cosets are equal). Can conjugate it by
...

16 Nov. 27

16.1 Administrative

• Problem Set 4 is out. [due on Friday].

• Trajectory for the next 2 weeks is posted.

• WIM paper is due on Wednesday.

Today:

• Centralizers and normalizers

• Towards the second iso theorem.

• “Unique factorization” for finite groups (the Jordan-Holder Theorem)

• Before thanksgiving we reached chapter 9, but now we’re in chapter 2.

• Want to chat about centralizers and normalizers and then unique factor-
ization for groups.

Second Isomorphism Theorem for Groups. (Section 3.2)
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Proposition 2 (Prop. 13, Prop. 14, Cor. 15). G group (not necessarily
abelian). If we have H,K < G subgroups, define
HK ⊂ G (not necessarily a subgroup) HK = {hk|h ∈ H, k ∈ K}. i.e. G = S3

and H = {e, (12)} and K = {e, (23)}, then HK is not a subgroup. |HK| = 4
and |G| = 6, so by lagrange’s theorem, |HK| must divide 6

Prop 13 If H,K are finite, then |HK| = |H||K|
|H∩K| .

Proof: H × K → HK by (h, k) → hk. Clearly this is surjective since that’s
how we define the elements of HK. Not necessarily a group, so can’t use first
Iso theorem. LHS has size |H||K| and RHS has size |HK| [clearly]. Want
to show that given something on the right, there are exactly |H ∩ K| elements
of (h, k) ∈ H × K with hk = h1k1, .... Well if hk = h1k1 this is true ⇐⇒
h−1h = k1k

−1 ∈ H∩K since LHS is in H and RHS in K. For every α ∈ H∩K,
I’ll tell you a different (h1, k1) ∈ H ×K with h1k1 = hk. If h−1

1 h = k1k
−1 = α¡

then h1 = hα−1 and k1 = αk−1.

Prop 14 HK is a subgroup ⇐⇒ HK = KH.
Proof: If HK = KH then why is HK a subgroup? Identity is clearly in there.
Is (h1k1)(h2k2) ∈ HK? h1(k1h2)k2 can be written as h1(h3k3)k2 where each h
is in H and k is in K as HK = KH. Clearly, this is an element of H times
an element of K = (h1h3)(k3k2) ∈ HK. Final thing: closed under inverses. Is
(hk)−1 ∈ HK (hk)−1 = k−1h−1 = h4k4 as h−1 ∈ H and k−1 ∈ K.

Now suppose HK is a subgroup. Is HK = KH? Can I rewrite hk as k5h5 for
k5 ∈ K and h5 ∈ H. (hk)−1 ∈ HK = k−1h−1 and HK is a subgroup, therefore
closed under inverses, so this is h6k6 and moreover hk = k−1

6 h−1
6 .

Go back to Section 2.2: Centralizers and Normalizers. A group G can
act on itself by conjugation: g ◦ h = ghg−1. This is a group action. G can also
act on Subsets of G. If A ⊂ G, then we say g centralizes A if gag−1 = a for
all a ∈ A. Every element of a is preserved by g.

Will be a question on the final about this: difference between cen-
tralizer and normalizer.
However, g normalizes A if gag−1 ∈ A for all a ∈ A.
If G is abelian, then every g centralizes and normalizes every A.

The centralizser of A < the normalizer of A, and they are both subgroup of G.

The normalizer of A acts on A: it’s a group action that sends elements of A to
other elements of A.

If g centralizes G, we say g is in the center of G. Z(G) < G [and moreover, it’s
a normal subgroup] where Z(G) is the center.

Denote CG(A) as the centralizer and NG(A) as the normalizer. CG(A) ∩a∈A
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Stab(a). If A is a normal subgroup, then the normalizer of A is the entire group:
NG(A) = G.

Cor. 15:[Section 3.3.] If H < NG(K), H,K < G. Then HK is a subgroup of
G.
Proof: From Prop. 14, we need to show that HK = KH. We know that
hKh−1 = K for all h ∈ H [definition of the normalizer]. In other words,
hK = Kh for all h ∈ H. This means HK = KH (by taking the union over all
h ∈ H).

2nd Iso. Theorem. G, A,B < G. A < NG(B), then AB is a subgroup.
Statement: A/A ∩ B ∼= AB/B. Specifically, B is a normal subgroup of AB
because when we conjugate B we get B back: abBb−1a−1 where the middle
term is ∈ B, so this is simply aBa−1 = B.

A → AB/B by a → aB. The kernel of this map are the things in A that go to
the identity in aB, so ker(ϕ)A ∩B.
So A ∩B is normal in A because it’s the kernel of this map.

17 November 29

If F is a field, Claim: F [x] is a unique factorization domain. How do we know
this? It is an Euclidean Domain [because it has a division algorithm].

F x
p form an abelian group [units of this field] have p − 1 elements. How many

solutions are there in xp−1 ≡ 1 mod p in Fp, so there are p− 1 solutions in Fp

[Fp is Z/pZ]. And it has roots 1, 2, ..., p− 1.

Factor (xp−1−1) ≡ (x−1)(x−2) · ... ·(x−(p−1)). Note F ∗
p are the non-zero

elements of the group/field.

x2 ≡ 1( mod p) – what are the solutions?

x2 − 1 ≡ 0

(x− 1)(x+ 1) ≡ 0

So these are the only two roots mod p. What about fourth roots mod p?

x4 ≡ 1 mod p

(x− 1)(x+ 1)(x2 + 1) ≡ 0

Question: Is there an element of (F ∗
p ) of order 4? If p ≡ 3 mod 4, then

|F |
p = 4k + 2 (size of the group is 1 less than p-1) where p ≡ 3 mod 4 so
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p = 4k + 3.

a2 + b2 = n: which n can be written as a sum of two squares? Consider
Z[i] = a+ bi where a, b ∈ Z has a unique factorization because it has a division
algorithm. The size Z is |a+ bi| = a2 + b2.

New ring, so the primes in the integers are not primes here. The meaning of the
word “prime” depends on what ring you’re in: 5 is not prime: 5 = (2+ i)(2− i).

|(a + bi)(c + di)| = |a + bi||c + di|: norm is multiplicative/factors. So ((ac −
bd)2 + (bc+ ad)2) = (a2 + b2)(c2 + d2).

In Z[i] if |z| = 0, then z = 0. If |z| = 1, then |z| = ±1,±i units. If |z| > 1, then
z is not a unit: zy = 1 so |z||y| = 1, so z is a unit.

Old-fashioned prime in p ∈ Z, maybe it factors in Z[i]. Take the prime factoriza-
tion: it can only factor into at most 2 pieces of size p: p = αβ, then |α| = |p| = p.

Conclusion: either p is prime or p = αα.

Every prime in Z[i] is one of these. Reason: Suppose a + bi is prime. Then
|a+ bi| = a2 + b2.
Take an old-fashion prime p ∈ Z that is a factor of a2 + b2. If p is a prime in
Z[i], then p|(a+ bi)(a+ bi).

18 December 4

Jordan Holder Theorem: [Did the first half on Dec. 1st class that you
missed].
Proposition: Suppose D is a group and we have two normal subgroups, B,C
inside D. And D/C, D/B is simple and B ̸= C. Then B ∩ C is normal in C
and D/B ∼= C/(C ∩B).

Proof: Consider the group homomorphism C → D/B (simple group by hypoth-
esis). What is the image of C in D/B. C is normal in D, so the image of ϕ
is normal in D/B [isomorphism theorem]. But C ̸⊂ B, so imϕ ̸= B/B normal
in D/B. Can’t be the one element subgroup, so it must be everything because
this group is simple. So imϕ = D/B so ϕ is surjective.

By the first iso theorem, C/kerϕ → D/B is an isomorphism [kerϕ is normal].

Normal: The image of a normal subgroup is always normal.
Prop Suppose B ◁D and C ◁D then the image of C in D/B is normal in D/B.
Proof. The image of C in D/B is CB/B: C times everything in B mod B.
Ponder/Exercise: the above. When you take the quotient of something,
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what is the image of that subgroup in the quotient?

“Factoring Sn” [with the Jordan-Holder Thm.]: What are the finite groups in
Sn? One group of size p where p is prime Z/p. Jordan Holder: how to factor
groups into smaller supbgroups.

Sn has size n!.

Def. Alternating subgroup An ◁Sn. It’s a group that’s normal and the quotient
group is Z/2. Will give us a group homomorphism from Sn → Z/2 = {±1}.
We’ll call these odd permutations or even ones.

An is simple except if n = 1 and A1 = S1 = {1}. If n = 2 A2 ◁ S2 where A2 has
order 1 but S2 has order 2.

A3 ◁ S3 where A3 has size 3 and S3 has size 6. |A4| = 24/2 = 12. All the rest
are simple: e.g. |A5| = 60. Only simple group of size < 168 not Z/p. These are
the only exceptions.

Define An = kernel of the sign function: Sn → {±1}.
Def. sgn: Sn → {±1}.
Given: σ : {1, ..., n} → {1, ..., n} ∈ Sn.

How often are the two cups are out-of-order: sign(
∏

1≤i⊂j≤n(σ(j) − σ(i))) ∈
{±1}. Same as sign function for determinant.

An are the permutations with sign +1 (that have an even number of permu-
tations or the permutation matrix represented by An has determinant 1: it
permutes the basis elements so if the first element becomes the third element,
the first row will be one-hot with a 1 in the 3rd column).

Let’s factor S2: S2 has size 2, so it’s simple. A3 ◁ S3 is a kernel of a map, so
it’s normal. It has size 3, so it’s simple: {e}◁A3◁S3 with quotients Z/3 and Z/2.

{e} ◁ ... ◁ K4 ◁ A4 ◁ S4 Where the quotients are Z/2, Z/2, Z 3, Z/2.

This relates to how you solve cubic, and quartic polynomial equations. It also
shows that you cannot solve a random quintic polynomial.
Section called alternating groups [today]. Last friday was Jordan-Holder thm.

19 December 6

Talking about simple groups and alternating groups.
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Theorem Suppose G is a finite group, and p is a prime factor of |G|. claim:
Then there is an element of order p in G. If |G| = 8, there must be an element
of order 2, but there does not necessarily need to be an element of order 4 or 8:
|G| = 8 = Z/2× Z/2Z/2.
Proof: Consider the following group action. The group is Z/pZ acting on the
set of {x1, ..., xp} ∈ G such that their product is the identity: x1 · ... · xp = e.

Set A size: |G|p−1 as Xp = (x1 · ·... · xp−1)
−1. A is a set of lists (x1, x2, ..., xp).

And we assume p||G|, so p|A.

Use orbit stabilizer thm: each orbit |Z/pZ| = |stab(A)||orb(a)| using the action
Z/pZ shifting everyting to the right by k steps.

If the stabilizer of x1..., xp = Z/pZ, then they’re all the same, so xp = e, i.e.,
element of order p other than e.

There must be some x ̸= e with xp = e (and in fact, there must be (p − 1) of
them) because |A| = |G|p−1.

An is the alternating subgroup – only contains elements that are an even num-
ber of swaps..
Theorem: A5 is simple and |A5| = 60.
Claim: If n ≥ 4, then (123) and (124) are conjugate in An.
Fake proof: (34)(123)(34) = (124): stick in 1 on the right of (34)(123)(34)1 and
see where it goes: goes to and therefore we have (124). Fake: because there are
not an even number of swaps.

Claim: If N ◁ An and n ≥ 4 and (123) ∈ N , then every 3-cycle is in N .
Pf: (12)(34)(123)((12)(34))−1 where the conjugate of ((12)(34)) = ((12)(34)).
Tldr: break up odd number of swaps into even number of them.

Claim: If n ≥ 3, the 3 cycles generate An.
Claim: The swaps (i.e. 2-cycles) generate Sn.
For any sequence of cups, I can unscramble them just by swapping two cups at
a time (i.e. 2-cycles).

For the 3-cycle case, that’s mixed up with an even permutation, choose one of
the cups and put it in place first. Can continue doing this until the last 3 cups:
2, 1 are still scrambled, then you’re not in An. All the cups are in order except
the first two which are swapped: then you’re not in An because this requires a
single swap (not an even number of permutations).

Say we know that A5 is simple: (Thm 12).
Suppose {e} = N ◁ An where n > 6. Goal: 3-cycle in N , then N = An.

29



20 December 8

Cayley’s Dums Theorem If G is a finite group, then G ≤ Sn for some sym-
metric group.

You can understand a group by its actions, and G acts on itself (by left multipli-
cation), so it’s really just a permutation of G, hence a subset of S10. What’s the
kernel of this action? Only the identity: when you left multiply by e, the group
doesn’t change. Used first iso theorem: G/kerϕ ∼= imϕ < SG where G → SG

via ϕ.

Class Equation Consider the action of G on itself where G is a finite group:
g ◦ h = ghg−1 is the conjugation action of G on itself. Previous example was
“left multiplication” action of G on itself.

G = ∪orbits and therefore |G| =
∑

|orbits|. If h ∈ G, then |orbit(h)|∗stab(h) =
|G|. stab(h) = {g ∈ g|ghg−1 = h&gh = hg} = CG(h) the centralizer of h.

|G| =
∑

orbits
|G|

CG(h) where h is any element in the orbit.

class equation = |Z(n)| (i.e. the center of G that has size 1) +
∑

orbits of size bigger than 1 |G|/|CG(h)|.

Every p−group i.e. |G|k where k = pa can be factored into subgroups isomorphic
to Z/pZ.
Sylow Theorems: Suppose G is a finite group and |G| = pam where p is prime
and m is co-prime to p. Define a p− subgroup of G is a subgroup who’s size is
a power of p. Know this must be at least size pa.

We define a p−sylow subgroup to be a subgroup of maximum size: pa.

If np is the number of p− Sylowes, then np|m and np ≡ 1 mod p.

If P is a p − Slow subgroup and Q is any p−subgroup, then ∃ a conjugate
gQg−1 ≤ P . As a consequence, all p-sylows are conjugate.

Suppose |G| = 21; claim: it’s not simple – it has a normal subgroup. A normal
subgroup is going to be a sylow subgroup: 3 or 7.

n3, n7: know there’s a subgroup of size 3 and another subgroup of size 7; but
we don’t know which one is “1” yet. n7 ...

[Final]: Four central things
1. Euclidean Algorithm: ax + by = 1 if a and b are relatively prime. Chinese
remainder theorem: Z/6Z ∼= Z/2Z× Z/3Z.
2. Groups! Quotient groups, cosets, subgroups, normal, group actions, orbits,
stabilizers, isomorphism theorems. Labrange’s theorem.
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21 Textbook

21.1 Preliminaries

Cardinality: The cardinality or order of a set A will be denoted by |A| is
the number of elements in A.
Cartesian Product: The cartesian product of two sets A,B is a new set
A×B = {(a, b)|a ∈ A, b ∈ B}.
Domain and Co-domain: Let f : A → B, then A is the domain of f and B
is the co-domain of f .
Well-defined functions: It is important to ensure f is well-defined: i.e., f
is unambiguously determined. Every point in the domain maps exactly to one
element in the co-domain. Non-well-defined functions may have a single point
in the domain map to two different points in the co-domain.
Range: The range or image of a function f is f(A) = {b ∈ B|b = f(a) for some a ∈
A}. Observe f(A) ⊆ B.
The pre-image of f is the set f−1(C) = {a ∈ A|f(a) ∈ C} for a given subset
C of B. This is the pre-image of set C under function f .
left and right inverses: f has a right inverse if ∃h : B → A such that
f ◦ h : B → B is the identity map on B and a left inverse if ∃g : A → B such
that g ◦ f is the identity map on A (i.e. (g ◦ f)(a) = a ∀a ∈ A).

21.2 Section 1.1 Basic Axioms and Examples

Binary Operation on a set G is a function · : G×G → G for any a, b ∈ G.

• A binary operation is associative if for all a, b, c ∈ G, a · (b · c) = (a · b) · c.

• A binary operation is commutative if for all a, b ∈ G, a · b = b · a
Closed under · If H is a subset of G, and the restriction of · to H is a binary
operation on H (i.e., ∀a, b ∈ H, a · b ∈ H), then H is said to be closed under
·. Group: a group is an ordered pair (G, ·) where G is a set and · is a binary
operation on G satisfying the following axioms:

1. · is associative.

2. ∃ identity element: ∀a ∈ G, ∃e ∈ G such that a · e = a.

3. ∃ inverse element: ∀a ∈ G, ∃a−1 ∈ G such that a · a−1 = e.

An Abelian Group is a Group that is commutative.

Definition 14 (Element Order). For G a group and x ∈ G, define the order of
x to be the smallest positive integer n such that xn = 1. Denote this integer as
|x|.
Definition 15 (nZ). nZ is the set of integers divisible by n

Definition 16 (Z/nZ). Z/nZ is the set of integers mod n. This is also the
quotient group of Z with nZ.
Elements of Z/nZ are called the residuals a = {a+ nk|k ∈ Z}
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21.3 Section 1.6 Homomorphisms and Isomorphisms

What does it mean when two groups “look” the same? In other words, when
do they have the same group theoretic structure? This is the notion of an
isomorphism between groups.

Definition 17 (homomorphism). Let (G, ◦) and (H, ⋆) be groups. A map
ϕ : G → H such that ϕ(x ◦ y) = ϕ(x) ⋆ ϕ(y) for all x, y ∈ G is called a ho-
momorphism. Without group actions, this is ϕ(xy) = ϕ(x)ϕ(y).

Informally, a function ϕ is a homomorphism if it respects the group structures
of its domain and co-domain. Performing one operation in the domain before
the function is equivalent to performing the operation after the function.

Definition 18 (isomorphism). The map ϕ : G → H is called an isomorphism
and G and H are said to be isomorphic G ∼= H if

1. ϕ is a homomorphism

2. ϕ is a bijection.

Informally, two groups are isomorphic if there is a bijection between them that
preserves the group operations. Intuitively, G and H are the same group, except
that the elements and the operations may be written differently in G and H.

21.4 Section 1.7 Group Actions

Definition 19 (Permutation). A permutation of a set A is simply a bijection
from A onto itself.

Definition 20 (Group Action). A group action of a group G on a set A is a
map from G × A to A (written as g · a for all g ∈ G and a ∈ A) satisfying the
following properties:

1. g1 · (g2 · a) = (g1g2) · a for all g1, g2 ∈ G, a ∈ A

2. 1 · a = a for all a ∈ A

Note: · is not the binary operation of G! g · a ∈ A, not necessarily
∈ G Informally, we say G is a group acting on a set A, and applying two group
actions on an element of A is equivalent to the product (g1g2) within the group
being applied to that same element.

Fact 1. Let the group G act on the set A. Then for each fixed g ∈ G, we get a
map σg defined by

σg : A → A

σg(a) = g · a

Two important facts are:
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1. for each fixed g ∈ G, σg is a permutation of A.

2. the map from G to SA defined by g → σg is a homomorphism.

Proof of 1. To show σg is a permutation of A, it suffices to show that σg has a
2-sided inverse. For any a ∈ A

(σ−1
g ◦ σg)a = σ−1

g (σg(a))

= g−1(g(a))

= (g−1 ◦ g)(a)
= 1 · a = a

The same can be repeated with σg ◦ σ−1
g to show the right-inverse.

Proof of 2. Define ϕ : G → SA be defined by ϕ(g) = σg. To show ϕ is a
homomorphism, we must show ϕ(g1g2) = ϕ(g1) ◦ ϕ(g2). For any a ∈ A:

ϕ(g1g2)(a) = σg1,g2(a)

= (g1g2)(a)

= g1 · (g2 · a)
= σ1(σ2(a))

= (σ1 · σ2)(a)

= (ϕ(g1) ◦ ϕ(g2)(a)

Informally, every element g ∈ G acts on A in a manner consistent with the
group operations in G.

Definition 21 (Permutation Representation). The homomorphism from G to
SA given by ϕ is called the permutation representation associated to the given
action.

The actions of a group G on a set A (i.e. g · a) and the homomorphisms from
G into the symmetric group SA are in bijective correspondance.

21.5 Section 2.1: Subgroups

Definition 22 (Supgroup). Let G be a group. The subset H of G is a subgroup
of G if H is nonempty and H is closed under products and inverses: ∀x, y ∈ H,
x−1 ∈ H and xy ∈ H. If H is a subgroup of G we write H ≤ G.

Subgroups of G are just subsets of G that are themselves groups with respect
to the operation defined in G, i.e., the binary operation on G restricts to give
a binary operation on H which is associative, has the identity in H, and has
inverses in H for all the elements of H.
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Proposition 3 (The Subgroup Criterion). A subset H of a group G is a sub-
group if and only if

1. H ̸= ∅

2. ∀x, y ∈ H, xy−1 ∈ H

Furthermore, if H is finite, then it suffices to check that H is nonempty and
closed under multiplication.

Proof of nonempty and closed under multiplication in finite group. This is a bit
tricky, but relies on the element order of every element in G. Recall the order
of x ∈ G is the smallest positive integer n such that xn = 1, and the element
order is linked to the cardinality of the set G.
For any element x ∈ H, it must be the case that xa = xb for some b > a because
the set is finite, but {x, x1, ...} is infinite. Then xb = xb−a+a = xb−axa and
xb−a = 1 as xb = xa. So the order of all elements in H is finite. Further, for
any x ∈ H, x1xn−1 = 1, so we have inverses too.

21.6 Section 2.2 Centralizers, Normalizers, Stabilizers, and
Kernels

We will review several important families of subgroups for an arbitrary group
G.

Definition 23 (Centralizer of a set). Define CG(A) = {g ∈ G|gag−1 = a for all a ∈ A}.
This subset of G is called the centralizer of A in G. Since gag−1 = a if and
only if ga = ag, so CG(A) is the set of elements of G that commute with every
element of A.

We can prove this is a subgroup of G.

Definition 24 (Center). Z(G) = {g ∈ G|gx = xg for all x ∈ g} is the center
of G: the set of elements commuting with all the elements of G.

This is also a subgroup as G(G) = CG(G) by the definition of a centralizer;
however, GG(A) is more general as it can act on an arbitrary set A rather than
the group G itself.

Definition 25 (Normalizer). Define gAg−1 = {gag−1|a ∈ A}. Define the
normalizer of A in G to be the set NG(A) = {g ∈ G|gAg−1 = A}.

Notice that if g ∈ CG(A), then gag−1 = a ∈ A for all a ∈ A, so GG(A) ≤ NG(A).
NG(A) is also a subgroup of G.

Definition 26 (Stabilizer). If G is a group acting on a set S and s is some
fixed element of S, then the stabilizer of s in G is the set Gs = {g ∈ G|g · s = s}

We can prove Gs ≤ G.
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Definition 27 (Kernel). The kernel of an action is a subgroup, where the kernel
of the action of G on S is defined as {g ∈ G|g · s = s for all s ∈ S}

While the stabilizer of an element of a set S is the set of group actions that do
not change s, the kernel of a group is the set of actions that do not change any
element of s when they act on this set.

21.7 Section 2.3 Cyclic Groups and Cyclic Subgroups

Let G be any group and x ∈ G. One way of forming a subgroup H of G
is by letting H be the set of all integer (positive, negative, and zero) powers
of x (this guarantees closure under inverses and products at least as far as x
is concerned). This section is devoted to studying these subgroups that are
generated by a single element.

Definition 28 (Cyclic Group). H is cyclic if it can be generated by a single
element, i.e., there is some element x ∈ H such that H = {xn|n ∈ Z} (where
the usua operator is multiplication). In additive notation, H is cyclic if H =
{nx|n ∈ Z}. In both cases, we shall write H = ⟨x⟩ and say H is generated by x
(and x is a generator of H).

A group may have more than one generator: H = ⟨x⟩ = ⟨x−1⟩.

Proposition 4. if H = ⟨x⟩, then |H| = |x|, so

1. if |H| = n < ∞, then xn = 1 and 1, x, x2, ..., xn−1 are all distinct elements
of H.

2. if |H| = ∞, then xn ̸= 1 fora ll n ̸= 0 and xa ̸= xb for all a ̸= b in Z.

Proposition 5. Let G be a group and let x ∈ G and let a ∈ Z− {0}.

1. If |x| = ∞, then |xa| = ∞

2. If |x| = n < ∞, then |xa| = n
gcd(n,a)

Proposition 6. Let H = ⟨x⟩.

1. If |x| = ∞, then H = ⟨xa⟩ ⇐⇒ a = ±1

2. Assume |x| = n < ∞. Then H = ⟨xa⟩ ⇐⇒ gcd(a, n) = 1. In particular,
the number of generators of H is ϕ(n) where ϕ is Euler’s function.

21.8 Section 2.4 Subgroups Generated by Subsets of a
Group

Given an arbitrary subset of a group G, that we’ll call A, what is the smallest
subgroup of G containing all elements of A? We show that closing A under
multiplication and taking inverses yields this smallest subgroup.
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Proposition 7. If A is a nonempty collection of subgroups of G, then the
intersection of all members of A is also a subgroup of G.

Definition 29 (Subgroup Generated by A). If A is any subset of the group G,
define ⟨A⟩ = ∩A⊂H,H≤GH to be the intersection of all subgroups H of G that
contain A. This is called the subgroup of G generated by A.

Observe that ⟨A⟩ is the unique minimum element of A as A can be larger than
⟨A⟩.
Definition 30 (Closure of a set A). Define the closure of A as A = {aϵ11 , ·aϵ22 ·
· · aϵnn |n ∈ Z, n ≥ 0 and ai ∈ A, ϵi = ±1 for each i}
So A is the set of all finite products of elements of A and inverses of elements
of A.

Proposition 8. A = ⟨A⟩
This is a meaningful proposition: it gives us a way to construct an arbitrary
subgroup from a set.

21.9 Section 3.1: Quotient Groups

Definition 31 (Fibers of Homomorphism). Let ϕ be a homomorphism from
G → H. Then the fibers of ϕ are the sets of elements of G projecting to single
elements of H: ϕ−1(h) = {g ∈ G|ϕ(g) = h} (i.e. the preimage of h).

This definition suggests the fibers themselves form a group. Let Xa be the pre-
image of a and Xb be the pre-image of b. Then as a, b are part of group H, and
ϕ is a homomorphism, Xa ·Xb = Xab.

This multiplication is associative as multiplication in H is associative. Similarly,
the “identity” fiber is the pre-image of the identity of H, and inverse fibers must
also exist as H is a group.

Roughly speaking, the group G is partitioned into sub-sets (fibers), and these
pieces themselves have the structure of a group, called the quotient group of G.
As we define multiplication of fibers by multiplication in H, by construction the
quotient group with this multiplication is naturally isomorphic to the image of
G under the homomorphism ϕ: there’s a bijection between the set of fibers and
the image of ϕ.

Definition 32 (Kernel). If ϕ is a homomorphism ϕ : G → H, the kernel of ϕ
is the set {g ∈ G|ϕ(g) = 1}
and will be denoted by ker(ϕ) (here 1 is the identity of H).

Definition 33 (Quotient Group). Let ϕ : G → H be a homomorphism with
kernel K. The quotient group, G|K, is the group whose elements are the pre-
image of ϕ with group operators defined above: namely if X is the fiber of a and
Y is the fiber of b, then the product of X with Y is defined to be the fiber of the
product ab.
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Definition 34 (Coset). For any N ≤ G and any g ∈ G, let

gN = {gn|n ∈ N} and Ng = {ng|n ∈ N}

be called respectively a left coset and right coset of N in G. Any element of a
coset is called a representative for the coset.

Theorem 11. Let G be a group and let K be the kernel of some homomorphism
from G to another group. Then the set whose elements are the left cosets of K
in G with the operation defined by

uK ◦ vK = (uv)K

forms the quotient group G|K.

Informally, the set of cosets of the kernel K, with binary operation described as
above, are equal to the quotient group G|K.

The cosets of an arbitrary subbgroup of G partition G (i.e. their union is all of
G and distinct cosets have trivial intersection).

Proposition 9. Let N be any subgroup of the group G. Then the set of left
cosets of N in G form a partition of G. Furthermore, for all u, v ∈ G, uN = vN
⇐⇒ v−1u ∈ N and in particular, uN = vN ⇐⇒ u, v are representatives of
the same coset.

Essentially, cosets have trivial intersection and partition G.

Definition 35 (Normal Subgroup). A subgroup N of G is called normal (N◁G)
if every element of G normalizes N (i.e. gNg−1 = N for all g ∈ G).

Normal subgroups are the “abelian components” of a group.

Theorem 12. Let N be a normal subgroup of G. Then

1. NG(N) = G: The normalizer of N in G is equal to the entire group G:
this is because every element of G normalizes N .

2. gN = Ng: Abelian property.

3. The operation of left cosets of N in G makes the set of left cosets into a
group. Suppose u, v are elements belonging to left cosets. THen uN = vN
if and only if u, v belong to the same left coset.

21.10 Section 3.2: Lagrange’s Theorem

One of the most important invariants of finite groups is its order. In particular,
the order of a quotient group of a finite group |G/N | (quotient of N with G)

is |G|
|N | . This is somewhat remarkable; we know the order of a quotient group

without knowing its elements.
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Theorem 13 (Lagrange’s Theorem). If G is a finite group and H is a subgroup
of G, then the order of H divides the order of G, and the number of left cosets

of H in G equals |G|
|H| .

Corollary 4. If G is a finite group and x ∈ G, then the order of x divides the
order of G. In particular, x|G| = 1 for all x ∈ G.

Proof. |x| = |⟨x⟩|, so applying Lagrange’s Theorem to H = ⟨x⟩ tells us the order
of this subgroup divides the order of G, and therefore the order of |x| = |⟨x⟩|
divides the order of G.

Corollary 5. If G is a group of prime order p, then G is cyclic, and hence
G ∼= Zp [the cyclic group of order p].

We can now look at converses of Lagrange’s theorem: if n divides |G|, must G

have a subgroup of order |G|
n ?

Theorem 14 (Cauchy’s Theorem). If G is a finite group, and p is a prime
dividing |G|, then G has an element of order p.

Theorem 15 (Sylow’s Theorem). If G is a finite group of order pαm where p
is a prime and p does not divide m, then G has a subgroup of order pα

Definition 36. Let H and K be subgroups of a group an define HK = {hk|h ∈
H, k ∈ K}.

Proposition 10. If H and K are finite subgroups of a group, then |HK| =
|H||K|
|H∩K|

Proposition 11. If H and K are subgroups of a group, HK is a subgroup if
and only if HK = KH.

21.11 3.4 Composition Series and the Holder Program

Proposition 12. If G is a finite abelian group and p is a prime dividing |G|,
then G contains an element of order p.

Definition 37 (Simple Group). A (finite or infinte) group G is called simple
if |G| > 1 and the only normal subgroups of G are 1 and G.

Note: Zn is the cyclic group of order n: i.e. the group generated by
a single element < x > that has order n. This group is isomorphic to
Z/nZ.

Definition 38 (Composition series). In a group G, a sequence of subgroups

1 = N0 ≤ N1 ≤ ... ≤ Nk = G

is called a composition series if Ni ◁Ni+1 and Ni+1/Ni is a simple group. This
The quotient groups Ni+1/Ni are called the composition factors of G.
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Theorem 16 (Jordan-Holder). Let G be a finite group with G ̸= 1. Then

1. G has a composition series.

2. The composition factors in a composition series are unique. Namely, if
1 = N0 ≤ N1 ≤ ... ≤ Nr = G and 1 = M0 ≤ M1 ≤ ... ≤ Ms = G are two
composition series for G, then r = s and there is some permutation π of
{1, 2, ..., r} such that Mπ(i)/Mπ(i)−1

∼= Ni/Ni−1

This allows us to classify all finite groups up to isomorphism by

1. Find all finite simple groups.

2. Find all ways of putting simple groups together to form other groups.

22 3.5: Transpositions and the Alternating Group

As we saw in 1.3, every element of Sn [the permutation group] can be written
as a product of disjoint cycles in an essentially unique fashion. However, any
single element can be written as a product of cycles. For example:
σ = (123) = (13)(12) = (12)(23).
Recall (123)1 sends 1 to 2, 2 to 3, and 3 to 1. This is equivalent to sending 1
to 2, 2 to 1 and then 1 to 3 (so 2 to 3), and finally 3 to 1. In this example, we
represent a cycle as a (nondisjoint) product of 2-cycles.

Definition 39 (Transposition). A 2-cycle is called a transposition.

And it can be shown any permutation in Sn can be written as a product of
disjoint cycles [how we represent it: i.e. (1 2 3)], and in particular, can be
rewritten as a product of transpositions.

Definition 40 (The Alternating Group). The alternating group of degree n,
denoted An, is the kernel of the homomorphism ϵ (i.e. the set of even permu-
tations) where ϵ is the sign function: ϵ(σ) ∈ {±1}. Simply, it’s the set of σ in
Sn that are even.

22.1 Section 7.1: Basic Definitions and Examples of Rings

Definition 41 (Ring). A ring R is a set together with two binary operations
+ and × (called addition and multiplication) that satisfy:

1. (R,+) is an abelian group.

2. × is associative: (a× b)× c = a× (b× c) for all a, b, c ∈ R

3. The distributive laws hold in R: for all a, b, c ∈ R, a+b)×c = (a×c)+(b×c)
and a× (b+ c) = (a× b) + (a× c)
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Moreover, the ring R is said to be commutative if multiplication is commutative.
Similarly, the ring R is said to have an identity (or contain a 1) if there is an
element 1 ∈ R with 1× a = a for any a ∈ R.

Example 5 (Functions as Rings). We can view a set of functions: f : X → A
as a ring under the usual definition of pointwise addition and multiplication of
functions:
Pointwise addition: (f + g)(x) = f(x) + g(x)
Multiplication: (fg)(x) = f(x)g(x).

Definition 42 (Division Ring or Skew Field). A ring R with identity 1, where
1 ̸= 0 is called a division ring or skew field if every nonzero element a ∈ R has
a multiplicative inverse: ∃b ∈ R such that ab = 1 = ba

Definition 43 (Field or Commutative Division Ring). A field (or effectively a
commutative division ring) is a division ring that is commutative.

Definition 44 (Zero Division). A nonzero element a of R is called a zero divisor
if there is a nonzero element b ∈ R such that ab or ba is equal to 0.

Definition 45 (Unit). Let R be a ring with identity 1 such that 1 ̸= 0. An
element u of R is called a unit in R if there is some v ∈ R such that uv = vu = 1.
The set of units in R is denoted by R×

Observe that a field is a ring R with identity 1, 1 ̸= 0, and where every nonzero
element is a unit: F× = F − {0}.

Definition 46 (Integral Domain). A commutative ring with identity 1 ̸= 0 is
called an integral domain if it has no zero divisors.

Proposition 13 (Cancellation Law). Assume a, b, c ∈ R and a is not a zero-
divisor. Then if ac = ab, either a = 0 or b = c.

Corollary 6. Any finite integral domain is a field.

Proof. Let R be a finite integral domain and let a be a nonzero element of R.
By the cancellation law, the map x → ax is an injective function. Since R is
finite, and the domain is equal to the co-domain, this map is also surjective.
In particular, ∃b such that ab = 1, so a must be a unit in R. Since a was any
nonzero element, all nonzero a ∈ R are units, and R is a field.

Definition 47 (Subring). A subring of the ring R is a subgroup of R that is
closed under multiplication.

As (R,+) is an abelian group, this effectively means that the operations of
+,× when restricted to S ⊂ R give S the structure of a ring. To check if a
subset is a subring, it sufficies to show the subset is closed under subtraction
and multiplication (or addition and multiplication if 1 is in your ring).
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22.2 Section 7.2: Polynomial Rings, Matrix Rings ,and
Group Rings

Example 6 (Polynomial Rings). anx
n + an−1x

n−1 + ...+ a0 is a polynomial of
degree n with n ≥ 0 and ai ∈ R with R being a commutative ring with identity.
anx

n is called the leading term, and an is called the leading coefficient. The
polynomial is monic if an = 1.

The set of all polynomials is called the ring of polynomials in the variable x with
coefficients in R will be denoted as R[x].

Addition: anx
n + bnx

n = (an + bn)xn

Multiplication: (axi)(bxj) = abxi+j and then apply distributive law to the sum.

Example 7 (Matrix Rings). Fix an arbitrary ring R and let n be a positive
integer. Let Mn(R) be teh set of all n× n matrices with entries from R.

The element (aij) ∈ Mn(R) is an n × n square matrix of elements of R whose
entry in row i and column j is aij ∈ R.

Addition and multiplication follow from typical matrix addition and multiplica-
tion.

Example 8 (Group Rings). Fix a commutative ring R with identity 1 ̸= 0
and let G = {g1, g2, ..., gn} be any finite group with group operation written
multiplicatively. Define the group ring, RG, of G with coefficients in R to be
teh set of all formal sums:

a1g1 + a2g2 + ...+ angn

with ai ∈ R, 1 ≤ i ≤ n. If g1 is the identity of G, we write a1g1 as a1. Similarly,
the element 1g is simply g.

Addition is “componentwise”: (a1g1+a2g2+...+angn)+(b1g1+b2g2+...+bngn) =
(a1 + b1)g1 + ...+ (an + bn)gn

For multiplication, define (agi)(bgj) = (ab)gk with ab in R and gigj = gk as
the product in group G. This product is then extended to all formal sums (i.e.
must include a sum of all elements in the finite group) by the distributive laws:
(a1g1 + ...+ angn)× (b1g1 + ...+ bngn) =

∑
gigj=gk

aibj.

22.3 Section 7.3: Ring Homomorphisms and Quotient Rings

Definition 48 (Ring Homomorphism). A ring homomorphism is a map ϕ :
R → S satisfying

1. ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ R (so ϕ is a group homomorphism on
the additive operator).
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2. ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R

A bijective ring homomorphism is called an isomorphism.

Definition 49 (Kernel). The kernel of the ring homomorphism ϕ, denoted kerϕ
is the set of elements of R that map to 0 in S: {x ∈ R|ϕ(x) = 0 ∈ S}.

Proposition 14. Let R and S be rings and let ϕ : R → S be a homomorphism.
Then

1. The image of ϕ is a subring of S

2. The kernel of ϕ is a subring of R. Furthermore, if α ∈ ker(ϕ), then
rα and αr ∈ kerϕ for every r ∈ R. Specifically, ker(ϕ) is closed under
multiplication by elements from R.

Recall that for groups, when ϕ is a homomorphism, the fibers of the homor-
phism have the structure of a group that is isomorphic to the image of ϕ. In
other words, the cosets of the domain group are isomorphic to the image of the
homormorpism. A similar property is true for rings.

Let ϕ : R → S be a ring homomorphism with kernel I. Since R and S are
abelian groups under addition, ϕ is a homomorphism of abelian groups and the
fibers of ϕ (i.e. pre-image of a point in the image: ϕ−1(s) = {x ∈ R} = fiber
in R are the additive cosets r + I of the kernel I. The set of these fibers have
the structure of a ring (where each fiber is an individual element in the ring)
that is naturally isomorphic to the image of ϕ: if X is the fiber of a ∈ S—i.e.
ϕ−1(a) = X—and Y is the fiber over b ∈ S, then X + Y is the fiber over a+ b
and XY is the fiber over ab. In your favorite terminology, X + Y = ϕ−1(a+ b)
and XY = ϕ−1(ab). Formally,

(r + I) + (s+ I) = (r + s) + I

(r + I)× (s+ I) = (rs) + I

This ring of cosets is called the quotient ring of R by I = ker(ϕ) and is denoted
R/I. Note that because (R,+) is abelian, the subgroup I is necessarily normal,
and therefore the quotient R/I of cosets of I is automatically an additive abelian
group. For an arbitrary subgroup I, it remains to see if the multiplicative
structure induced from multiplication in R. In general the answer is no, but
this leads to the notion of an ideal in R for which this subgroup does induce a
quotient ring. Later, we will see the ideals of R are exactly the kernels of the
ring homomorphisms of R. Taking α, β ∈ I we have:

(r + α)(s+ β) + I = rs+ I

rs+ αs+ rβ + αβ + I = rs+ I

42



Therefore, αs, rβ ∈ I and moreover αβ ∈ I. It then must be the case that
αβ ∈ I, and that for any element in I, αs ∈ I and rβ ∈ I. So I is also closed
by multiplication on the left and right with elements from R. Such I that are
closed under multiplication on the left and right by elements of R are called the
ideals of R.

Definition 50 (Ideal). Let R be a ring, let I be a subset of R and let r ∈ R.

1. rI = {ra|a ∈ I} and Ir = {ar|a ∈ I}

2. A subset I of R is called an ideal of R if

(a) I is a subring of R

(b) I is closed under multiplication by elements from R: rI = Ir ⊆ I for
all r ∈ R

The course textbook emphasizes left and right ideals as commutativity of rings
is not assumed, and for commutative rings, these two notions coincide. to
prove a subset I of a ring R is an ideal, it is necessary to prove that
I is nonempty, closed under subtraction, and closed under multipli-
cation by all elements in R. If R has a 1, then (−1)a = −a, so it suffices
to show closed under addition rather than subtraction (as multiplication by -1
emulates subtraction). Finally, the kernel of any ring homomorphism is an ideal.

To summarize, if I is an ideal of R, then the operations of the quotient group
R/I is a ring under:

1. (r + I) + (s+ I) = (r + s) + I

2. (r + I)× (s+ I) = (rs) + I

Conversely, if I is any subgroup such that the above operations are well defined,
then I is an ideal of R.

Definition 51 (Quotient Ring). When I is an ideal of R, the ring R/I with
the operations above is called the quotient ring of R by I.

Theorem 17 (First Isomorphism Theorem for Rings). If ϕ : R → S is a ho-
momorphism of rings, then teh kernel of ϕ is an ideal of R, the image of ϕ is a
subring of S and R/kerϕ is isomorphic as a ring to ϕ(R).

Conversely, if I is any ideal of R, then the map R → R/I defined by r = r + I
is a surjective ring homomorphism with kernel I [this homomorphism is called
the natural projection of R onto R/I].

Thus, every ideal is the kernel of a ring homomorphism and vice-versa.

Theorem 18 (Second Isomorphism Theorem for Rings). Let A be a subring
and let B be an ideal of R. Then A+B = {a+ b|a ∈ A, b ∈ B} is a subring of
R A ∩B is an ideal of A, and (A+B)/B ∼= A/(A ∩B)
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Theorem 19 (Third Isomorphism Theorem for Rings). Let I and J be ideals
of R with I ⊆ J . Then J/I is an ideal of R/I and (R/I)/(J/I) ∼= R/J .

Theorem 20 (Fourth (or Lattice) Isomorphism Theorem for Rings). Let I
be an ideal of R. The correspondance A ⇐⇒ A/I is an inclusion preserving
bijection between the set of subrings A of R that contain I and the set of subrings
of R/I. Furthermore, A (a subring containing I) is an ideal if and only if A/I
is an ideal of R/I.

If I and J are ideals in the ring R, then the set of sums a + b with a ∈ I and
b ∈ J is not only a subring of R [2nd isomorphism theorem], but is also an ideal
in R.

Definition 52 (Properties of Ideals). 1. Define the sum of I and J by I +
J = {a+ b|a ∈ I, b ∈ J}

2. Define the product of I and J , dentoed by IJ , to be the set of all finite
sums of elements of the form ab with a ∈ Iand b ∈ J .

3. For any n ≥ 1, define the nth power of I, denoted by In, to be the set
consisting of all finite sums of elements of the form a1a2 · · ·an with ai ∈ I
for all i.

22.4 Section 7.4: Properties of Ideals

Definition 53 (Ideal Generated by A). Let A be any subset of the ring R.

1. Let (A) denote the smallest ideal of R containing A, called the ideal gen-
erated by A.

2. Let RA denote the set of all finite sums of elements fo the form ra with
r ∈ R and a ∈ A, i.e., RA = {r1a1 + r2a2 + ...+ rnan|ri ∈ R, ai ∈ A,n ∈
Z+}.

3. An ideal generated by a single element is called a principal ideal.

4. An ideal generated by a finite set is called a finitely generated ideal.

We can also say (A) = ∩A⊆II, or the ideal generated by the set A is equal to
the intersection of all ideals that contain A.

Consider the principal ideal (a) composed of elements ra for some r ∈ R. Then
an element b ∈ R belongs to (a) if and only if b = ra, or equivalently b is a
multiple of a, or equivalently a divides b in R. Similarly, b ∈ (a) ⇐⇒ (b) ⊆ (a).

Example 9 (Integer Polynomials). Consider the ideal (2, x) generated by 2 and
x in Z[x] : {2p(x) + xq(x)|p(x), q(x) ∈ Z[x]}. This is not a principal ideal: i.e.

44



it cannot be (a(x)) for some a(x) ∈ Z.

Suppose (2, x) = (a(x)) for some a ∈ Z[x]. Then 2 ∈ (a(x)) so 2 = a(x)p(x)
for some p(x) ∈ Z[x] and a = {±1,±2}. If a = ±1, then (a(x)) is not a proper
ideal as it is equal to Z[x]. So a = ±2. Then (2) = (−2) = x because x ∈ (2, x),
so 2q(x) = x for some q(x) ∈ Z[x]. This is impossible for integer coefficient
polynomials.

Proposition 15. Let I be an ideal of R. Then

1. I = R if and only if I contains a unit (i.e. a such that aa−1 = 1

2. If R is commutative, then R is a field ⇐⇒ its only ideals are 0 and R.d

Corollary 7. If R is a field, then any non-zero ring homomorphism from R
into another ring is injective.

Proof. The kernel of a ring homomorphism is an ideal, and the only ideals of R
are R and 0. As the kernel of a non-zero ring homomorphism is a proper ideal
(i.e. not the entire set), then the kernel is 0, and ϕ is injective.

Definition 54 (Maximal Ideal). An ideal M in an arbitrary ring S is called a
maximal ideal if M ̸= S and the only ideals containing M are M and S.

A ring does not need to have any maximal ideals – take for example the group
Q and define multiplication to be trivial: ab = 0. In this instance, the ideals
are simply the subgroups, and as Q has no maximal subgroups, there are no
maximal ideals.

Proposition 16. In a ring with identity, every property ideal is contained in a
maximal ideal.

This proof uses Zorn’s Lemma which in-turn assumes the axiom of choice. Zorn’s
Lemma states that a partially ordered set (i.e. for certain pairs of elements, one
precedes the other) containing upper bounds for every chain (i.e. a subset of
elements in the set that are ordered), then the set contains at least one maximal
element.

Proposition 17. Assume that R is commutative. The ideal M is a maximal
ideal if and only if the quotient ring R/M is a field.

This shows us how to construct fields: take a commutative ring, and quotient
it by an maximal ideal.

Definition 55 (Prime Ideal). Let R be a commutative ring. An ideal P is called
a prime ideal if P ̸= R and whenever the product ab of two elements a, b ∈ R is
an element of P , then at least one of a and b is an element of P .

A prime “ideal” is a fairly natural generalization of the notion of a “prime” in
the integers Z. For example, let n be non-negative integer. Then the ideal nZ is
a prime ideal provided n ̸= 1 (to ensure the ideal is proper) and perovided every
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time the product ab of two integers is an element of nZ at least one of a, b is an
element of nZ. Put another way, whenever n divides ab, n must either divide a
or b. This is equivalent to the usual definition that n is a prime number, and
the prime ideals of Z are simply the ideals pZ where p is prime.

Proposition 18. Let R be a commutative ring. Then the ideal P is a prime
ideal in R ⇐⇒ the quotient ring R/P is an integral domain (i.e. has no
nonzero divisors).

Corollary 8. Let R be a commutative ring. Every maximal ideal of R is a
prime ideal.

22.5 Section 7.6: The Chinese Remainder Theorem

Throughout this section, assume that all rings are commutative with an identity
1 ̸= 0.

Definition 56 (Cartesian Product of Rings). For rings R1, R2, define the
Cartesian product R1 ×R2 as the set of ordered pairs (r1, r2) such that r1 ∈ R1

and r2 ∈ R2.

1. (r1, r2) + (s1, s2) = (r1 + s1, r2 + s2)

2. (r1, r2)(s1, s2) = (r1s1, r2s2)

A function ϕ : R → (X,Y ) is homomorphism ⇐⇒ the induced map into each
component is a homomorphism.

For prime numbers in Z, we say a, b are relatively prime if (a, b) = 1—or
equivalently—a solution to na + mb = 1. We seek to generalize this notion
of relative primeness to arbitrary groups.

Definition 57 (Comaximal). The ideals A and B of the ring R are said to be
comaximal if A+B = R.

Theorem 21 (Chinese Remainder Theorem). Let A1, A2, ..., Ak be ideals in R.
Then the map:

R → R/A1 ×R/A2 × ...×R/Ak

defined by r → (r +A1, r +A2, ..., r +Ak) is a ring homomorphism with kernel
A1 ∩A2 ∩ ... ∩Ak.

If for each i, j ∈ {1, 2, ..., k} with i ̸= j, the ideals Ai and Aj are comaximal,
then this map is surjective and A1 ∩ ... ∩Ak = A1A2 · · ·Ak, so
R/(A1A2 · · ·Ak) = R/(A1 ∩ ... ∩Ak) ∼= R/A1 ×R/A2 × ...×R/Ak
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22.6 Section 8.1: Euclidean Domains

Assume that all rings are commutative.

Definition 58 (Norm in an Integral Domain). Any function N : R → Z+∪{0}
with N(0) = 0 is called a norm on the integral domain R. The norm is essential
a measure of “size” in R.

Definition 59 (Euclidean Domain). The integral domain R is said to be an
Euclidean Domain if there is a norm N on R such that for any two elements
a, b ∈ R with b ̸= 0, there exists elements q and r in R with

a = qb+ r with r = 0 or N(r) < N(b).

The element q is called the quotient and the element r is called the remainder
of the division.

This property enables the Euclidean Algorithm by successive “divisions” to find
a rn, the last nonzero remainder.

Proposition 19. Every ideal in a Euclidean Domain is principal. MOre pre-
cisely, if I is any nonzero ideal in the Euclidean Domain R, then I = (d) where
d is any nonzero element of I of minimum norm.

Definition 60 (GCD of Ideals). If I is the ideal of R generated by a and b,
then d is the greatest common divisor of a and b if

1. I is contained in the principal ideal (d) and

2. if (d’) is any principal ideal ocntaining I, then (d) ⊆ (d’)

The greatest common divisor of the ideal generated by (a, b)—if it exists—is a
generator for the unique smallest principal ideal containing a and b.

Proposition 20. If a and b are nonzero elements i the commutative ring R
such that the ideal generated by a and b is a principal ideal (d), then then d is
a greatest common divisor of a and b.

This explains why the symbol (a, b) is used to denote both the ideal generated
by a and b as well as the greatest common divisor of a and b.

Proposition 21 (Uniqueness of GCDs). Let R be an integral domain. If two
elements d and d’ of R generate the same principal ideal, i.e. (d) = (d’), then
d’ = ud for some unit u in R.

Theorem 22. Let R be a Euclidean Domain and let a and b be nonzero elements
of R. Let d = rn be the last nonzero remainder in the Euclidean Algorithm for
a and b. Then

1. d is a greatest common divisor of a and b and

2. the principal ideal (d) is the ideal generated by a and b. In particular, d
can be written as an R-linear combination of a and b, i.e. there exists
elements x and y in R such that

d = ax+ by
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22.7 Section 8.2: Principal Ideal Domains (P.I.D.s)

Definition 61 (Principal Ideal Domain). A Principal Ideal Domain is an
integral domain in which every ideal is principal (i.e. generated from a single
element: (a)).

We showed in 8.1 that every Euclidean Domain is a Principal Ideal Domain, so
results about Principal Ideal Domains will also hold for Euclidean Domains.
However, every Principal Ideal Domain is not necessarily an Eu-
clidean Domain. We think of Principal Domains as one step more general
than Euclidean Domains: every ideal can be generated by a single value, but
there’s no sense of “size”.

Conceptually, Principal Ideal Domains are a natural class of rings beyond fields
(where the ideals are the trivial (0) and (1)). However, differing from Euclidean
Domains, Principal Ideal Domains do not have a notion of “norm” or “size”.
This result has tangible applications: greatest common divisors exist in P.I.D.s;
however unlike in Eucliean Domains, we cannot apply the Euclidean algorithm
to compute them as there’s no notion of “size”.

Proposition 22. Let R be a P.I.D. adn a, b be nonzero elements of R. Let d
be a generator for the principal ideal generated by a and b. Then

1. d is a greatest common divisor of a and b.

2. d can be written as an R − lienar combination of a adn b: i.e. there are
elements x and y in R with d = ax+ by.

3. d is unique up to multiplication by a unit of R.

22.8 Section 8.3: Unique Factorization Domains (U.F.D.s

Taking another step more general, every Principal Ideal Domain is a Unique
Factorization Domain; however, not every Unique Factorization Domain is a
Principal Ideal Domain.

Definition 62. Let R be an integral domain.

1. Suppose r ∈ R is nonzero and is not a unit. Then r is called irreducible
in R if whenever r = ab, then at least one of a or b must be a unit in R

2. The nonzero element p ∈ R is called prime if the ideal (p) generated by p
is a prime ideal. In other words, a nonzero element p is a prime if it is
not a unit and whenever p|ab for any a, b ∈ R, then either p|a or p|b.

3. Two elements a, b of R differing by a unit are said to be associates in R:
a = ub for some unit u in R.

It is not true in general that an irreducible element is necessarily
prime. However, if R is a PID, notions of prime and irreducible elements are
the same.
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Proposition 23. In a Principal Ideal Domain a nonzero element is a prime if
and only if it is irreducible.

Proposition 24. In a Unique Factorization Domain a nonzero element is a
prime if and only if it is irreducible.
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