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1 September 26

1.1 The Set of Real Numbers

Def. The set Rof real numbers is a set satisfying the following 13 axioms.

1. ∃ a binary operation such that for any x, y ∈ R, x+ y ∈ R.

2. Addition is associative: x+ (y + z) = (x+ y) + z.

3. Addition is commutative: x+ y = y + x.

4. An additive identity exists: x+ 0 = x ∀x ∈ R.

Remark: It’s simple to prove this additive identity is unique. Assume
there is a second additive identity 0’. Then 0 + 0’ = 0 = 0’. Therefore
0 = 0’, and they’re the same number (therefore unique zero element).

5. An additive inverse exists: ∀x ∈ R,∃y ∈ R such that x+ y = 0.
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Remark: We can use 1. - 4. to prove it is unique.

6. There is a binary operation ∗ such that ∀x, y ∈ R, x ∗ y ∈ R (typically
denoted as xy).

7. Multiplication is associative: x(yz) = (xy)z.

8. Multiplication is commutative: xy = yx.

9. A multiplication identity exists: ∃1 ∈ R, 1 ̸= 0 such that 1 ∗ x = x.

Remark: The set {0} would satisfy 1-8. Axiom 9 is the first one which
requires the set be composed of additional elements.

10. A multiplicative inverse exists for non-zero real numbers: ∀x ∈ R, x ̸=
0,∃y ∈ R such that xy = 1.

Remark: We can prove this is unique with 1-9.

Remark: Cannot have an inverse of 0: it would violate 9 since by defini-
tion x ∗ 0 = 0 and 1 ̸= 0.

11. Multiplication distributes over addition: x(y + z) = xy + xz.

12. Order Axiom: ∃P ⊂ R callex the set of ”positive real numbers” such that:

(a) x, y ∈ P ⇒ x+ y ∈ P .

(b) If x ∈ R, then exactly one of the following is true:

i. x ∈ P .

ii. −x ∈ P

iii. x = 0

Notation: (a) x > y means x− y ∈ P

(b) x < y means y − x ∈ P

(c) x ≥ y means x− y ∈ P or x = y

(d) x ≤ y means y − x ∈ P or x = y

Remark: This axiom offers a notion of ”ordering” which allows us to
compare two numbers in the sense of ”bigger” or ”smaller”.

13. Completeness Axiom (or Least Upper Bound axiom): Any non-empty
subset of R that is bounded above has a least upper bound.

Upper Bound: We say A ⊂ R is bounded above if ∃a ∈ R such that
∀x ∈ A, x ≤ a. Any such a is called an upper bound of A.

Least Upper Bound: An upper bound a of A is called a least upper
bound if for any other upper bound b, a ≤ b.
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Remark: ∃ subset of rational numbers with no least upper bound (i.e.
the set {x ∈ Q|x2 < 2}, since we can always find a number that’s a
little closer to

√
2 in the set of rational numbers than the number we

assume to be the supremum.

Remark: The completeness axiom separates the Real numbers from the
rational numbers.

1.2 Dedekind Cuts

Dedekind Cuts is a method to define the real numbers from Q and N. Def.: A
Dedekind Cut of Q is a set r ∈ Q such that:

• r ̸= {}.

• r ̸= Q.

• If y ∈ r, x ∈ Q, x < y, then x ∈ r (i.e. all rationals less than y are in the
”Dedekind cut” r.

• ̸ ∃x ∈ r such that x ≥ y ∀y ∈ r (i.e. no supremum or upper bound of r).

Ex.

• r = {x ∈ Q|x < 2} is a dedekind cut.

• s = {x ∈ Q|x2 < 2} ∪ {x ∈ Q|x < 0} is the union of two dedekind cuts.

Remark Dedekind defined Rto be the set of all Dedekind cuts of Q. Each set
of Dedekind Cuts then represents a single Real Number (i.e.

√
2 = {x ∈ Q|x2 <

2}). You can then define axioms on this set.

Theorem 1.1
√
2 is irrational: ̸ ∃x ∈ Q s.t. x2 = 2.

Proof. [by contradiction]. Suppose not. Then ∃x ∈ Q s.t. x2 = 2. So we
can write x = p

q for some coprime integers (i.e. integers that share no common

factors). Expanding on the last point, we can write any rational number as a
fraction of coprime integers p, q ∈ Z (co-prime: cancel out the common factors).

Then x2 = p2

q2 = 2. And p2 since 2 is even, therefore p is even, therefore p = 2n

for some integer n. And 2q2 = p2 = 4n2 ⇒ q2 = 2n2 ⇒ q2 is even ⇒ q is even.
Therefore, we arrive at a contradiction since p and q are co-prime.

Def. If x ∈ R, the absolute value of x is defined as

1. |x| = x if x > 0.

2. |x| = −x if x < 0.

3. |x| = 0 if x = 0.

.

Theorem 1.2 Triangle Inequality: |x+ y| ≤ |x|+ |y|
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2 September 28

2.1 Dedekind Cuts (cont.)

Suppose r is a Dedekind Cut. We say:

• We say r < s (one Dedekind cut is less than another) if r is a proper
subset of s (i.e. s contains all elements of r and at least one more element
that is not in r): r ⫋ s.

• We can define 0 as: {x ∈ Q|x < 0}.

• We can define -r as: -r := {x|∃y > x,−y ∈ r} or -r := 0 - r = {x− y|x ∈
0, y ∈ Q \ r}.

• A is a set of Dedekind cuts. The least upper bound of A is just ∪r∈Ar.

2.2 Supremum and Infinum

Def. Archimedean Property of Real Numbers. If n is a positive integer, we will
denote by n the real number 1 + 1 + 1 + ... + 1 (n-times).

• This represents an embedding of natural numbers within R.

• We can do this with Qas well.

• ⇒ N ⊂ R and Q ⊂ R.

Theorem 2.1 Given any ϵ > 0 , ∃n (i.e. a positive integer) such that n∗ ϵ > 1
(i.e. add ϵ n times).

Proof: Suppose y = sup(S) ∈ R and note y− ϵ < y. Then y− ϵ is not an upper
bound. Therefore, ∃n ∗ ϵ > y − ϵ⇒ n ∗ ϵ+ ϵ = ϵ(n+ 1) > y ⇒ contradiction.

Corollary 2.1.1 Let x be a non-negative (i.e. x ≥ 0) real number. If x <
ϵ,∀ϵ > 0, then x = 0.

Proof: Since x < ϵ∀ϵ > 0, we have x < 1
n∀n ∈ N. Therefore, n ∗ x < 1 ∀n.

Therefore x = 0 since x ̸> 0 (by the Archimedean Property). Expanding on the
last point, Given any ϵ > 0, ∃n such that n ∗ ϵ > 1, and therefore x ̸> 0 and
x = 0.

2.3 Sequence of Real Numbers

An infinite list of real numbers x1, x2, x3, ... is called a sequence.
Def.

• Let {xn}∞n=1be a sequence of real numbers. We say that {xn}∞n=1converges
to a limit x if:

1. ∀ϵ > 0, ∃N ≥ 1 such that ∀n ≥ N , |xn − x| < ϵ.
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2. x is denoted by lim
n→inf

xn.

3. For a limit x, and any difference ϵ, ∃ some N ≥ 1 such that for all
numbers greater than N, the difference of further elements in this
sequence is < ϵ.

Ex. lim
n→inf

n
n+1 = 1.

xn = n
n+1 and |xn − 1| = | n

n+1 − 1| = | −1
n+1 | =

1
n+1 . Take any ϵ > 0, by the

Archimedean property, ∃N such that N ∗ ϵ > 1 ⇒ 1
N < ϵ. Thus ∀n ≥ N ,

|xn − 1| = 1
n+1 <

1
N < ϵ.

Theorem 2.2 If x and x’ are both limits of the same sequence {xn}∞n=1, then
x = x’.

Proof: Take ϵ > 0 ⇒ ∃N1 s.t. ∀n ≥ N1, |xn − x| < ϵ
2 and ∃N2 s.t. ∀n ≥

N2, |xn − x′| < ϵ
2 [definition of the limit of the sequence]. Then we can take any

n ≥ max{N1, N2} such that |xn − x| < ϵ
2 and |xn − x′| < ϵ

2 . Thus |x− x′| ≤
|x− xn| + |xn − x′| < ϵ [Reverse triangle inequality]. So |x− x′| < ϵ ∀ϵ > 0,
but |x− x′| ≥ 0, so |x− x′| = 0 and thus x’ = x.

Theorem 2.3 (Sandwiching Principle/Squeeze Theorem) Let an ≤ bn ≤
cn∀n. If lim

n→inf
an = lim

n→inf
cn and both limits exist, then lim

n→inf
an = lim

n→inf
bn =

lim
n→inf

cn.

Proof: Let L = lim
n→inf

an = lim
n→inf

cn. Take any ϵ > 0 ⇒ ∃N1 such that ∀n ≥ N1,

|an − L| < ϵ. Similarly, ∃N2 such that ∀n ≥ N2, |cn − L| < ϵ. Let N =
max{N1, N2}, take any n ≥ N1, then |an − L| < ϵ, |cn − L| < ϵ. Therefore,
L − ϵ < an < L + ϵ and L − ϵ < cn < L + ϵ. But we know an ≤ bn ≤ cn
⇒ L − ϵ < an ≤ bn ≤ cn < L + ϵ ⇒ L − ϵ < bn < L + ϵ ⇒ |bn − L| < ϵ and
therefore lim

n→inf
bn = L.

Def. [Bounded Sequence]. {xn}∞n=1is called ”bounded above” if ∃M ∈ R such
that ∀n, xn ≤M .

• Similar for bounded below.

• A sequence is ”bounded” if it is both bounded above and below.

3 September 30

3.1 Bounds of Sequences

Theorem 3.1 Any convergent sequence is bounded (bounded above and below).

Proof: Let {xn}∞n=1be a sequence converging to a limit x. Then ∃N such that
∀n ≥ N , |xn − x| < 1 (typical criterion for convergence where we choose ϵ = 1).

7



Then ∀n ≥ N , |xn| = |xn − x+ x| ≤ |xn − x|+ |x| < 1+ |x| (middle equality via
triangle inequality). If n < N , xn ≤ max{|x1|, |x2|, ..., |xN−1|. Thus ∀n, |xn| ≤
max{|x1|, |x2|, ..., |xN−1|, 1 + |x|}, and we’ve therefore found a fixed upper and
lower bound (since we bound the absolute value of x). Expanding on the last
inequalities, we find that xn is less or equal to than the maximum of the absolute
value of any element in the sequence up to the Nth element (including the nth
element). And after the Nth element, we know |xn| < 1 + |x|. Therefore we
can combine these two partitions of the sequence to find the upper and lower
bound (i.e. a fixed bound on the |xn|).
Def.[Monotone Sequences]

• A sequence is called increasing if xn ≤ xn+1∀n.

• A sequence is called decreasing if xn ≥ xn+1∀n.

• A sequence is either increasing or decreasing.

Theorem 3.2 Any increasing sequence {xn}∞n=1that is bounded above converges
to the limit which is the supn≥1xn (i.e. a single number). Similarly, any de-
creasing sequence that is bounded below converges to infn≥1xn.

Remark. This is clearly not true for Q: teh sequence approaching
√
2 is

increasing (i.e. add a digit) but converges to a number
√
2 that is outside the set

of rationals. Proof: Assume {xn}∞n=1is an increasing sequence which is bounded
above. Then x = supn≥1xn is defined as the supremum of the sequence (and it
exists..). Take ϵ > 0. Then x−ϵ < x and x−ϵ is not an upper bound. Therefore,
there exists an element in {xn}∞n=1such that x− ϵ < xn. But since {xn}∞n=1is an
increasing sequence, this implies x− ϵ < xn∀n ≥ N . But xn ≤ x∀n. Therefore,
∀n ≥ N , x − ϵ < xn ≤ x. Therefore, |x− xn| < ϵ and the sequence converges
to x. To prove |x− xn| < ϵ you need both x− xn < ϵ as well as xn − x < ϵ.

Theorem 3.3 (Bolzano-Weierstrass Theorem) Any bounded sequence has
a subsequence that converges to a limit.

Def.[Subsequence]: Suppose that {xn}∞n=1is a sequence and n1 < n2 < n3 <
..., < n is a strictly increasing sequence of natural numbers. Then

• xn1
, xn2

, xn3
, ... is called a subsequence of x1, x2, ....

• xn2 , xn4 , xn6 , ... is a subsequence.

• xn2
, xn3

, xn5
, ... is a subsequence.

• xn2
, xn1

, xn4
, ... is not a subsequence.

Proof: Since xn is a bounded sequence, ∃a, b ∈ R such that xn ∈ [a, b] (this
notation indicates every xn is between the interval a and b) ∀n. i.e. [a, b] =
{x|a ≤ x ≤ b}, (a, b) = {x|a < x < b}, [a, b) = {x|a ≤ x < b}.
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Now let [a, b] = [a, a+b
2 ∪ [a+b

2 , b]. Then at least one half (although both may)
must contain xn for infinitely many n (since {xn}∞n=1is infinite). Let [a1, b1] be
one such half (if both halves contain infinitely many xn, simply choose one).
Now let again [a1, b1] = [a1,

a1+b1
2 ] ∪ [a1+b1

2 , b1]. Again, at least one half must
contain infinitely many xn’s. Let [a2, b2] be one such half...

Note: [an+1, bn+1] ⊂ [an, bn]∀n. Thus a1 ≤ a2 ≤ a3, ... and b1 ≥ b2 ≥ b3, ... are
monotone sequences and are bounded inside [a, b]. Therefore lim an and lim bn
exist and are bounded above and below [using any increasing sequence that is
bounded above converges to the supremum and any sequence that is bounded
below converges to the infinum]! Note, bn − an = b−a

2n ⇒ bn − an → 0. So the
limit of both sequences is L: lim an = lim bn = L and there’s a subsequence of
a1, a2, ... and b1, b2, b3, ... that exists within xn.
Claim: ∃ a subsequence xn1 , xn2 , ... converging to L. Proof: Since [a1, b1]
contains xn for infinitely many n, we can find n1 such that xn1

∈ [a1, b1].
Since [a2, b2] contains xn for infinitely many n, we can find n2 > n1 such that
xn2

∈ [a2, b2]. Continuing this way, we could find a strictly increasing sequence
n1 < n2 < n3, ... such that ∀k, xnk

∈ [ak, bk]. Therefore, ak ≤ xnk
≤ bk∀k. By

the sandwiching principle (squeeze theorem), lim
k→inf

xnk
= L.

Def.[Cauchy]: A sequence of real numbers {xn}∞n=1is called ”cauchy” if ∀ϵ >
0,∃N such that ∀m,n ≥ N, |xm − xn| < ϵ. This is even stronger than con-
vergence (i.e. after a certain index in the sequence, the absolute value of the
difference of any two elements of the sequence is less than an arbitrary value.

Theorem 3.4 A sequence of real numbers is convergent if and only if it is
Cauchy.

4 October 3

4.1 Cauchy Sequences

Theorem 4.1 A sequence {xn}∞n=1of real numbers is Cauchy if and only if it
is convergent.

Remark.
Don’t even need to know the limit, if you can tell it’s cauchy, it’s convergent.

Prof:
Convergent ⇒ Cauchy
Suppose that the sequence {xn}∞n=1converges to a limit x. Take any ϵ > 0.
Find N so large that ∀n ≥ N , |xn − x| < ϵ

2 [from the definition of con-
vergence to a limit]. Take any m,n ≥ N , Then by the triangle inequality
|xm − xn| ≤ |xm − x|+ |x− xn| < ϵ

2 + ϵ
2 = ϵ.

Convergent ⇐ Cauchy
Let {xn}∞n=1be a Cauchy sequence.
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Step 1: {xn}∞n=1is a bounded sequence.
Proof: ∃N such that ∀m,n ≥ N , |xm − xn| < 1. In particular, for all n ≥ N ,
|xN − xn| < 1 ⇒ |xn| ≤ |xN − xn|+ |xN | < 1 + |xN |.

We’ve seen this technique before for bounding a sequence. First bound every-
thing after index N using convergence properties, and then bound everything
before N by taking the max of a finite sequence.

But for n < N , |xn| ≤ max{|x1|, ..., |xN−1|}. Thus ∀n, |xn| ≤ max{|x1|, ..., |xN−1|, 1+
|xN |}. Therefore, {xn}∞n=1is bounded (both above and below because we find
an upper bound for |xn|.

Step 2: By Bolzano-Weierstrass, there exists a subsequence {xn}∞n=1converging
to some x. [We don’t know what the limit is, but there is some limit.]

Step 3: lim
n→∞

xn = x [The whole sequence converges to a limit – not just the

subsequence].
Proof: Take any ϵ > 0. Since xnk

→ x as k → ∞, ∃K such that ∀k ≥ K,
|xnk

− x| < ϵ
2 . On the other hand, since {xn}∞n=1is Cauchy, ∃N such that

∀m,n ≥ N , |xn − xm| < ϵ
2 [Cauchy property]. Now recall n1 < n2 < n3 < ... is

strictly increasing. Take any n ≥ N . ∃k such that k ≥ K, and nk ≥ N .

We’re using Step 2 to find a subsequence of indices k such that xnk
converges

to a limit x as well as the property of {xn}∞n=1being Cauchy. If we pick a index
that’s sufficiently far along...

• Then |xnk
− x| < ϵ

2 since k ≥ K.

• |xn − xnk
| < ϵ

2 since n, nk ≥ N .

Thus, |xn − x| ≤ |xn − xnk
|+ |xnk

− x| < ϵ
2 + ϵ

2 = ϵ, and {xn}∞n=1converges to
x.

4.2 Convergence to Infinity

Remark: convergence to infinity

• We say that lim
n→∞

xn = ∞, if for any x ∈ R, ∃N such that ∀n ≥ N , xn > x.

• lim
n→∞

xn = −∞, if ∀x ∈ R, ∃N such that ∀n ≥ N , xn < x.

Theorem 4.2 Any monotone sequence of real numbers converges to a limit in
R ∪ {−∞,∞}.

Remark: We should try to prove this on our own later on.
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4.3 Limsup and Liminf

Def.[Limsup of a sequence]
Let {xn}∞n=1be any sequence of real numbers. For each n, let bn = sup{ak|k ≥ n}
where the supremum is defined to be ∞ if the set {ak|k ≥ n} (i.e. the least
upperbound on the sequence of all values that come after the current index n)
is unbounded above.

Then b1 ≥ b2 ≥ b3 ≥ b4, ... is a strictly decreasing sequence since at each
successive index, we take the supremum of a smaller set of numbers (holds for
convergence to infinity as well). We are presented with a decreasing sequence
of real numbers, so the limit lim

n→∞
bn exists and is in R ∪ {−∞,∞}. This limit

is called the ”limit superior” of {xn}∞n=1and is denoted by lim sup
n→∞

an. Any se-

quence has a lim sup, and it’s always well defined (even if the sequence itself
does not have a limit).

Def.[Liminf of a sequence]
Let cn = inf{ak|k ≥ n}. The inf is −∞ if the set {ak|k ≥ n} is bounded below.
Then c1 ≤ c2 ≤ c3 ≤ .... lim inf

n→∞
an := lim

n→∞
cn ∈ R ∪ {−∞,∞}.

Ex. {−1, 1,−1, 1,−1, 1, ...} lim sup an = 1 and lim inf an = −1 [although the
limit itself of the sequence does not exist]. Intuitively, the lim sup is the small-
est number such that the sequence goes above it finitely many times. Anything
smaller than this value, the sequence will go below it infinitely many times.
Accordingly, the limsup or liminf are mainly used to prove that limits exist...

Theorem 4.3 For any sequence {xn}∞n=1, the liminf ≤ limsup.

Proof: Let bn = supk≥n ak and cn = infk≥n ak. Then cn ≤ bn ∀n. Thus,
lim inf an = lim cn ≤ lim bn = lim sup an. If liminf = limsup, that’s a necessary
and sufficient condition for the limit of the sequence to exist.

Theorem 4.4 If the lim sup an = lim inf an, then lim an exists and is equal to
this number. Conversely, if lim an exists, then lim sup an = lim inf an = lim an.

Proof:
First, suppose that lim sup an = lim inf an = L ∈ R.(Your own exercise: prove
it for L = ∞,−∞).

Let bn = supk≥n ak, cn = infk≥n ak. Then, cn ≤ an ≤ bn. But cn → L
and bn → L. Thus by sandwiching an → L. (bn = sup{an, an+1, an+2, ...}, thus
an is clearly less than or equal to bn – same reasoning applies to inf). We could
prove the sandwiching principle holds even if limit is ∞ or −∞.

Conversely, suppose that lim
n→∞

an = L ∈ R.

11



Take any ϵ > 0, Then ∃n such that |an − L| < ϵ ∀n ≥ N . In particular,
∀n ≥ N , an < L + ϵ. This implies, bN = sup{an|n ≥ N} ≤ L + ϵ [L + ϵ is
the upper bound of the set]. b1 ≥ b2 ≥ ...→ lim sup an Thus, lim sup an ≤ L+ϵ.

Note this relation holds for ϵ > 0 and no longer contains N (independent of
the index you choose in the sequence): lim sup an ≤ L.

By a similar argument, lim inf an ≥ L. Thus lim sup an ≤ lim inf an, but we
know that the lim sup an ≥ lim inf an, therefore both limits are equal: lim sup an
= lim inf an. And moving to the Limit L, lim sup an ≤ L ≤ lim inf an. Thus
lim sup an = lim inf an = L.

To review, if the limsup and liminf both exist and are equal, then then the
limit exists and is equal to that number. Conversely, if the limit exists, then
the limsup and liminf exists and both converge to that same number. This
technique may help us understand is oscillating (i.e. one of liminf or limsup
converges but not the other; or they are not equal to each other).

In this proof, we used the fact, we used the following fact to lower the bound
on lim sup and lim inf from L+ ϵ to L: x ≤ y + ϵ ∀ϵ > 0 ⇒ x ≤ y.

5 October 5

5.1 Limsup and Liminf

Recall the lim sup
n→∞

an is a single value representing what the supremum of succes-

sively smaller subsets of {an}∞n=1 converges to. More formally, define another
sequence {bn}∞n=1 such that bn = sup{ak|k ≥ n}. Denote an element of the
sequence bn = supk≥n an. Then we have the following properties:

• supn≥1(an + bn) ≤ supn≥1 an + supn≥1 bn.

– This is because ai + bi can cancel each other out.

– e.g. {1, 2, 3, 4} with {-1, -2, -3, -4} – supn≥1 an = 4 and supn≥1 bn =
−1, but supn≥1 an + bn = 0

• Extending this to the lim sup as n→ ∞, ∀n, supk≥n(ak+bk) ≤ supk≥nak+
supk≥nbk ⇒ lim sup

n→∞
an + bn ≤ lim sup

n→∞
an + lim sup

n→∞
bn.

• Note: for a regular limit, it’s an equals rather than this inequality: lim
n→∞

an+

lim
n→∞

bn = lim
n→∞

an + bn.

• For lim inf
n→∞

an + bn ≥ lim inf
n→∞

an + lim
n→∞

bn

12



Theorem 5.1 (Cesaro limit theorem) If lim
n→∞

an = L then lim
n→∞

1
n

∑n
k=1 ak =

L. Opposite is not necessarily true – considering oscillating sequences that can-
cel each other out.

Proof :
Take any ϵ > 0, ∃N such that ∀n ≥ N , |an − L| < ϵ. [Definition of lim

n→∞
an = L]

Therefore, ∀n ≥ N , we can rearrange terms so that an < L+ ϵ [from |an − L| <
ϵ].
⇒ ∀n ≥ N :

a1 + ...+ an
n

=
a1 + ...+ aN−1

n
+
aN + ...+ an

n
= [breaking up the sum into terms < N and terms ≥ N ]

≤ a1 + ...+ aN−1

n
+

(L+ ϵ) + (L+ ϵ) + ...+ (L+ ϵ)

n
Since ∀n ≥ N , an < L+ ϵ

=
a1 + ...+ aN−1

n
+
n−N + 1

n
∗ (L+ ϵ)

There are n - N + 1 terms ≥ N and ≤ n

Let’s say there are bn terms in the first summation (i.e. a1+...+aN−1

n ) and cn
terms in the second summation n−N+1

n ∗ (L+ ϵ).

Then lim sup 1
n

∑n
k=1 ak ≤ lim sup (bn + cn) ≤ lim sup bn + lim sup cn. We see

lim
n→∞

bn = 0 since the numerator is a finite sum while the denominator → ∞
and lim

n→∞
cn = L+ ϵ since the term n−N+1

n → 1 as n→ ∞.

Therefore, lim sup 1
n

∑n
k=1 ak ≤ L+ϵ. Similarly, lim inf

n→∞
1
n

∑n
k=1 ak ≥ L. There-

fore, the limit lim
n→∞

1
n

∑n
k=1 ak exists and is equal to L.

5.2 Infinite Series

Let {xn}∞n=1be a sequence of real numbers. We say that the infinite series
∞∑

n=1
an converges if the sequence {

∑∞
k=1 ak}∞n=1 [i.e. sum everything below n in

{xn}∞n=1to represent the nth value of the infinite series] converges. Its value is
declared to be the limit of the sequence {

∑∞
k=1 ak}∞n=1.

Ex. Geometric Series.
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Take some r such that |r| < 1. Then

(1− r)(1 + r + r2 + ...+ rn) = 1 + r + r2 + ...+−r(1 + ...+ rn) = 1− rn+1

Note r ̸= 1 and

⇒ 1 + r + r2 + ...+ rn =
1− rn+1

1− r

=
1− rn+1

1− r

=
1

1− r
− rn+1

1− r

So lim
n→∞

1 + r + .. + rn = 1
1−r since rn+1 as n → ∞ = 0 as r < 1. Thus∑∞

n=0 rn = 1
1−r if |r| < 1.

Theorem 5.2 If
∑∞

n=1 an converges (or equivalently, exists), then lim
n→∞

an = 0.

Proof:

Let pn =
n∑

k=1

ak and qn =
∑n−1

k=1 ak. Also let L =
∞∑

n=1
an = lim

n→∞
pn.

However, qn = pn−1 and therefore lim
n→∞

qn = L. We can find an = pn − qn,

and since lim
n→∞

pn = lim
n→∞

qn, lim
n→∞

an = 0.

Expanding on lim
n→∞

pn = lim
n→∞

qn: Take any ϵ > 0. We can then find N such that

∀n ≥ N , |pn − L| < ϵ. We can now define N ′ = N + 1 and take any n ≥ N ′.
Then we can show lim

n→∞
qn = L = lim

n→∞
pn−1.

The converse implication is not true:
∞∑

n=1

1
n = ∞ [i.e. does not converge] even

though lim
n→∞

1
n = 0.

Proof: Did in class. Broke up into splits of
∑2k−1

2k−1 an and showed each was ≤
than 1/2. Showed each partial sum was bounded below → the sum goes to k

2
as k → ∞ therefore, the series does not converge.

Theorem 5.3 If an ≥ 0 ∀n, and {
n∑

k=1

ak}∞n=1 is bounded above [i.e. the series

is bounded above], then
∞∑

n=1
an converges. Converse is also true (only for non-

negative sequences).

Proof:
Let bn =

∑n
k=1 ak. Then bn is an increasing sequence since an ≥ 0 ∀n [using the

definition of the series
∞∑

n=1
an as equivalent to the sequence bn = {

n∑
k=1

ak}∞n=1].

14



Thus bn converges if and only if it is a bounded sequence.

Ex.

• We’d like to prove
∑∞

n=0
1
n! converges

1. 1
n! ≤

1
1∗2∗2∗2..∗2 = 1

2n−1

2.
∑∞

n=1
1

2n−1 converges since its a geometric series with |r| = 1
2 < 1.

3. ⇒
∑∞

n=1
1

2n−1 are bounded above and
∑∞

n=1
1

2n−1 is an upper bound
of

∑∞
n=1

1
n!

4. → {
∑n

k=0
1
k!}

∞
n=1 is bounded above.

•
∑∞

n=1
1
nk converges for any k > 1. Riemann Zeta function.

Def.[Absolute Convergence]:
A series

∑∞
n=1 an is called absolutely convergent if

∑∞
n=1 |an| converges. [just

have to show it’s bounded above because a it is a series of non-negative terms].

6 October 7

6.1 Absolute Convergence

Def.[Positive and Negative Parts]

• Take any x ∈ R.

• x+ = max{x, 0} =

{
x if x ≥ 0

0if x < 0
= the posiitve component of x.

• x− = −min{x, 0} =

{
0 if x > 0

−xif x ≤ 0
= the negative component of x.

• Note: both x+ and x− are non-negative valued real numbers.

• x = x+ − x−

• |x| = x+ + x−

Theorem 6.1 (Absolutely Convergent Series) An absolutely convergent se-
ries is convergent.

Proof: Let
∞∑

n=1
an be absolutely convergent. That means

∞∑
n=1

|an| converges. We

would like to show
∞∑

n=1
an converges.

We first consider the finite summation
n∑

k=1

ak =
n∑

k=1

(a+k −a−k ) =
n∑

k=1

a+k -
n∑

k=1

a−k

15



. Since
∞∑

n=1
|an| is convergent, there exists a limit L such that any finite sum is

less than or equal to L: ∃L such that ∀n,
n∑

k=1

|an| ≤ L. Therefore,

∀n,
n∑

k=1

a+k +
n∑

k=1

a−k =
n∑

k=1

|ak| ≤ L and both summations
n∑

k=1

a+k ≤ L and

n∑
k=1

a−k ≤ L are individually bounded above by L ⇒ both converge as n → ∞.

This last part uses the theorem from last class:
If an ≥ 0∀n, and {

∑n
k=1 ak}∞n=1 is bounded above, then

∑∞
n=1 an converges.

Converse is also true (only for non-negative sequences).

Therefore lim
n→∞

n∑
k=1

a+k and lim
n→∞

n∑
k=1

a−k both exist [although we don’t know what

they are].

Ex.
∞∑

n=1

1
n! ⇒

∞∑
n=1

| 1n! | =
∞∑

n=1
(−1)n 1

n! and this converges ⇒
∞∑

n=1

1
n! converges!

6.2 Conditional Convergence and Alternating Series

Def.[Conditionally Convergent]. A series is called conditionally convergent if it
is convergent, but not absolutely convergent.
Ex. 1− 1

2 +
1
3 −

1
4 +

1
5 − ... converges to log(2) but is not absolutely convergent.

Theorem 6.2 (Alternating Series) Suppose that {an}∞n=1 is a decreasing se-

quence converging to 0. Then
∞∑

n=1
(−1)n−1an = a1 − a2 + a3 − a4 + ... converges

(i.e. the alternating series converges).

Proof:[sketch]: a1 − a2 + a3 − a4 + a5 − a6 ={
(a1 − a2) + (a3 − a4) + (a5 − a6) where (a1 − a2) ≥ 0, (a3 − a4) ≥ 0, ...

a1 − (a2 − a3)− (a4 − a5)− a6 ≤ a1 − a6 where (a2 − a3) ≥ 0 and (a4 − a5) ≥ 0
.

Let Sn =
2∑

k=1

n(−1)k−1ak ⇒ Sn = (a1 − a2) + (a3 − a4) + (a5 − a6) + ... +

(a2n−1 − a2n). Then {Sn}∞n=1 is an increasing sequence [and is composed of the
even terms of the original series]. On the other hand, Sn = (a1 − (a2 − a3) −
(a4 − a5) − ... − (a2n−2 − a2n−1) − a2n ≤ a1 − a2n ≤ a1. Thus, we have found
a bound for Sn which is an increasing sequence. Therefore, we have a limit for
Sn: lim+n→ ∞Sn exists, and we’ll call it L.

Define tn =
n∑

k=1

(−1)kak. We need to show limn→ ∞tn exists. Claim: limn→ ∞tn =

L.
Proof Take any ϵ > 0.
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• ∃N1 such that ∀n ≥ N1, |Sn − L| < ϵ
2 .

• ∃N2 such that ∀n ≥ Nn, |an| < ϵ
2 . [This arrives from an → 0 as n→ ∞].

Let N = max{2N1 + 1, N2}, take any n ≥ N . Then there are two cases:

• n is even. Then tn = Sn/2. Note that n
2 ≥ N

2 ≥ N1 ⇒ |tn − L| =
|Sn/2 − L| < ϵ

2 .

• n is odd. Then n = 2m + 1 where m = n−1
2 . Therefore, tn = sm+an and

– n ≥ N ⇒ m ≥ N1 ⇒ |Sm − L| < ϵ
2

– and n ≥ N ⇒ n ≥ N2 ⇒ |an| < ϵ
2

Thus, |tn − L| < ϵ. [from tn = a1 − a2 + ... + an−2 − an−1 + an where
a1−a2+...+an−2−an−1 = S(n−1)/2 so |Sm+an−L| ≤ |Sm−L|+|an| < ϵ].

Theorem 6.3 Let
∞∑

n=1
an be an absolutely convergent series. Then for any bi-

jection π : N → N ,
∞∑

n=1
aπ(n) is also absolutely convergent and the two values

are equal:
∞∑

n=1
an =

∞∑
n=1

aπ(n). This effectively says reordering the terms of the

series doesn’t change what it converges to.

6.3 Metric Spaces

Def.[Metric Spaces] Let M be a set. A metric on M is a function d: from
d :MxM → [0,∞) [think of this like a distance function] which satisfies

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x) ∀x, y ∈M .

3. d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈M

Then the pair (M,d) is called a metric space.

Ex.

• Let M = R, d(x, y) = |x− y|

• M = Rk = {(x1, ..., xk)|x1, ..., xk ∈ R}. d(x, y) =
√∑k

i=1(xi − yi)2 [Eu-

clidean Distance].

• M = Rk. d(x, y) =
∑k

i=1 |xi − yi| (l1 metric – I know this as L1).

• M = l2 = {(x1, x2, ...)|xi ∈ R,∀i,
∑∞

i=1 x
2
i converges}. d(x, y) =

√∑k
i=1(xi − yi)2.

• M = l1 = {(x1, x2, ...)|xi ∈ R,∀i,
∑∞

i=1 |xi| converges}. d(x, y) =
∑k

i=1 |xi−
yi|.
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7 October 10

7.1 Euclidean Distance is a metric on R
We left off with needing to prove the triangle inequality to prove that Euclidean

distance d(x, y) =
√∑k

i=1(xi − yi)2 is indeed a metric on M = Rn. We begin

with proving the Cauchy-Schwarz Inequality.

Theorem 7.1 (Cauchy-Schwarz Inequality) Let a1, ..., an, b1, ..., bn ∈ R.

Then |
n∑

i=1

aibi| ≤
√

n∑
i=1

a2i
n∑

i=1

b2i

Proof:

0 ≤
n∑

i=1

n∑
j=1

(aibj − ajbi)
2 [square of difference is non-negative]

=
∑
i

∑
j

(a2i b
2
j + a2jb

2
i − 2aibjajbi) [expanding out terms...]

Note that∑
i

∑
j

a2i b
2
j = (

∑
i

a2i )(
∑
j

b2j )

= (
∑

a2i )(
∑

b2i )

since summation starts at i = j = 1 and goes to n

And similarly, ∑
i

∑
j

a2jb
2
i = (

∑
a2i )(

∑
b2i )

Therefore, ... ∑
i

∑
j

aibjajbi = (
∑
i

aibi)(
∑
j

ajbj)

= (
∑
i

aibi)(
∑
i

aibi)

= (
∑

aibi)
2

Finally, we see that

0 ≤
∑
i

∑
j

(a2i b
2
j + a2jb

2
i − 2aibjajbi)

⇒ 0 ≤ 2(
∑

a2i )(
∑

b2i )− 2(
∑

aibi)
2)

⇒ (
∑

aibi)
2 ≤ (

∑
a2i )(

∑
b2i )
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We can now proceed with the triangle inequality proof:

n∑
i=1

(ai + bi)
2 =

∑
i

a2i +
∑
i

b2i + 2

n∑
i=1

(ai + bi)

≤
n∑

i=1

a2i +

n∑
i=1

b2i + 2

√√√√ n∑
i=1

a2i +

n∑
i=1

b2i

Note:

n∑
i=1

(ai + bi) ≤

√√√√ n∑
i=1

(ai + bi)2 ≤

√√√√ n∑
i=1

a2i +

n∑
i=1

b2i

= (
√∑

a2i +
√∑

b2i )

⇒
√∑

(ai + bi)2 ≤
√∑

a2i +
√∑

b2i

Formally [proving the triangle inequality for euclidean space]:
Take x, y, z ∈ Rn, x = (x1, ..., xn), etc. Then

d(x, z) =

√√√√ n∑
i=1

(xi − zi)2

=

√√√√ n∑
i=1

(xi − yi + yi − zi)2

≤

√√√√ n∑
i=1

(xi − yi)2 +

√√√√ n∑
i=1

(zi − yi)2

= d(x, y) + d(y, z)

7.2 l2 Metric Space

Recall we define a set M = l2 = {(x1, x2, ...) : xi ∈ R,∀i,
∑∞

i=1 x
2
i < ∞}. If

x, y ∈ l2, d(x, y) =
√∑∞

i=1(xi − yi)2, and (M,d) is the metric space.

Fact. d(x, y) <∞ ∀x, y ∈ l2.
Proof:

For any n,
n∑

i=1

(xi−yi)2 ≤

[√
n∑

i=1

x2i +

√
n∑

i=1

y2i

]2

≤
[√∑∞

i=1 x
2
i +

√∑∞
i=1 y

2
i

]2
<

∞ since x and y are in l2.
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Triangle inequality in l2 is the same: Let x, y ∈ l2. Then

d(x, y) =

√√√√ ∞∑
i=1

(xi − yi)2

=

√√√√[
lim
n→∞

n∑
i=1

(xi − yi)2

]
Since we have a finite sum, we can break it up into two finite parts...

=

√√√√ lim
n→∞

[
n∑

i=1

(xi − zi + zi − yi)2

]

≤

√√√√ lim
n→∞

[
n∑

i=1

(xi − zi)2

]
+

√√√√ lim
n→∞

[
n∑

i=1

(zi − yi)2

]

= lim
n→∞

√√√√ n∑
i=1

(xi − zi)2 + lim
n→∞

√√√√ n∑
i=1

(zi − yi)2

= d(x, z) + d(z, y)

In this logic, we used

• an → a⇒ √
an →

√
a

• a2n → a2, an ≤ bn∀n⇒ lim an ≤ lim bn

7.3 Sequences in metric spaces

Let {xn}∞n=1 be a sequence of points in a metric space (M,d).

We say that lim
n→∞

xn = x (i.e. xn → x), if ∀ϵ > 0, ∃N such that ∀n ≥ N ,

d(x, xn) < ϵ.

Notably, we simply use distance to the limit rather than the difference of the
value of the reals (i.e. order axiom) for the definition of convergence.

Fact. If the limit exists, then it is unique.
Note d(x, y) = 0 ⇐⇒ x = y from our definition of a distance metric on a set
satisfying a metric space. Therefore, if we have two limits L1, L2 acting on a
sequence, then the distance d(L1, L2) must be 0. From that, we can conclude
the distance must be the same.
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7.4 Convergence in Rn

Let {x(k)}∞k=1 be a sequence of points in Rn. Then lim
k→∞

x(k) = x if and only

if for each i = 1, ..., n lim
k→∞

x
(k)
i = xi. More simply, each ith coordinate in x

(k)
i

converges to a value xi.

Proof:
Suppose that lim

k→∞
x(k) = x. Take any i ∈ {1, ..., n} and take any ϵ > 0, Then

∃N such that ∀k ≥ N , d(x(k), x) < ϵ.

We take any k ≥ N , then

|x(k)i − x| =
√
(x

(k)
i − xi)2

≤

√√√√ n∑
i=1

(x
(k)
j − xj)2

= d(x(k), x)

< ϵ

Thus x
(k)
i → xi as k → ∞. If the sequence converges, then the coordinates

must converge.

Conversely, suppose that for each i = 1, ..., n, the lim
k→∞

x
(k)
i = xi (i.e. each

of the coordinates converge).

Take any ϵ > 0, for each i, ∃Ni such that ∀k > Ni, |x(k)i − xi| < ϵ√
n
. [Each

coordinate converges to xi].

Then let N = max{N1, N2, ...Nn}. Take any k ≥ N , then

d(x(k), x) =

√√√√ n∑
i=1

(x
(k)
i − xi)2

Euclidean distance measure

<

√√√√ n∑
i=1

ϵ2

n

Each coordinate is bounded by
ϵ

n
= ϵ

Very simple: if each coordinate is bounded by xi, then the series is bounded by
x = [x1, x2, ..., xn].
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Ex. Consider the set l2. Let x(k) = (0, 0, 0, ..., 0, 1, 0, 0, ...) where there is a
1 at the kth coordinate and 0 everywhere else. Clearly, x ∈ l2.

So take any i, lim
k→∞

x
(k)
i = 0. On the other hand x(k) ̸→ (0, 0, ..., 0) = 0. So

d(x(k), 0⃗) = 1. Clearly, x(k) is not converging to 0, and we’ll see later the
sequence is not converging to any point in l2. This is one reason l2 is funda-
mentally different to R: it is not “complete” (why we call Axiom 13 of R the
“completeness axiom”). If we have a sequence of values in a set that converges
outside this set, the set is not “complete”.

Metric spaces allow us to define the framework to study function spaces [i.e.
spaces where every point in the space is a function]. The notion of “distance”
is then conveyed as a distance between functions. In a sense l2 is a function
space: you can apply a fourier expansion to a function, and the infinite fourier
coefficients will reside in l2. We can therefore study the fourier series as an
infinite sequence in l2.

Theorem 7.2 Suppose {xn}∞n=1 is a sequence in a metric space that converges
to some point. Then {xn}∞n=1 is a Cauchy Sequence meaning that ∀ϵ > 0, ∃N
such that ∀m,n ≥ N , d(xn, xm) < ϵ.

Note The converse is not always true!
Simple example: take metric space M to be the interval M = (0,1) with d(x,y)
= |x, y|. The sequence xn = 1

n is Cauchy in R, but does not converge in M.

Rather it converges to a value outside M which is a priori not defined. This has
an important consequence: Cauchy sequences in metric spaces may not have
limits, and this is why we call Axiom 13 of Rthe completeness axiom. Notably,
it “completes” the space of Rby ensuring every Cauchy Sequence converges to
a value in R. However, as the theorem states, if you have a metric space, and a
sequence in that space that is convergent to some point, then that sequence is
Cauchy.

7.5 Closed Sets

Let (M,d) be a metric space and let X ⊆ M be a subset. We say that a point
x ∈M is a limit point of X if ∃ a sequence {xn}∞n=1 in X such that lim

n→∞
xn = x.

Effectively this definition defines a subset of a set M and looks at the sequences
of values of X that converge to a point in X.

Ex.
M = R, X = (0,1) then 0 and 1 are limit points of X.
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Def.[Limit Point] We denote the set of all limit points of X by X̄ and de-
note X̄ as the “closure” of X.

Fact
X ⊆ X̄ since for any x ∈ X, the sequence x, x, x, x, ... converges to x. Therefore
every point in the set itself is an element of the closure [there’s always a constant
sequence composed entirely of x ∈ X that converges to x].

Def. We say that a set X is closed if X = X̄. All limit points are in the set itself.
This may not always be the case: notably when a sequence {xn}∞n=1converges
to a point ̸∈ X.

Ex. Any [a, b] ⊆ R is closed.
Proof: Take any sequence {xn}∞n=1 in [a, b]. Then a ≤ xn ≤ b ∀n.
⇒ a ≤ x ≤ b so x = lim

n→∞
xn.

Ex. The open interval (a, b) ⊆ R is not closed as we can construct a sequence
entirely in X that converges to the boundaries of the interval.
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8.1 Properties Closed Sets

Def Closed Set. Let (M,d) be a metric space. A set X ⊆ M is called closed if
whenever {xn}∞n=1 is a sequence in X converging to some x ∈M , then x ∈ X.
Ex. [a, b] is a closed subset of R under the usual metric (absolute value distance).

• In any metric space M, the sets {} and M are closed. Empty set is
vacuously true [it contains no sequences]. If A implies B, and A is never
true, than the previous statement is always true [vacuously true].

• For any x ∈M , the set {x} is closed. [converges to x trivially].

• The closure of any set is closed [the closure of the closure is the closure
itself].

Proof:
Take any X ⊆ M , let {xn}∞n=1 be a sequence in the closure X̄ con-
verging to x ∈ M . Have to show this little x ∈ M is also in the
closure. Since xn ∈ X̄, there is a sequence of points in X that con-
verges to xn. So we can find yn ∈ X such that d(xn, yn) =

1
n . Can

easily prove from this that yn → x (yn also converges to x). Thus
x ∈ X̄.

Theorem 8.1 If A and B are closed, so is A ∪B.
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Proof: Take a sequence {xn}∞n=1in A ∪ B converging to x ∈ M . Then at least
one of the following must be true:

1. either xn ∈ A for infinitely many n

2. or xn ∈ B for infinitely may n.

3. (either in A or B or both – both may be true, but at least one of them is
true).

If (1) is true, then we can find a n1 < n2 < ... such that xnk
∈ A ∀k [use

subsequence so that we pick elements of the sequence just in A]. But {xnk
} is a

subsequence of {xn}∞n=1and xn → x, so xnk
→ x as k → ∞. And x ∈ A because

A is closed. Similarly if (2) is true, then x ∈ B. Therefore, since A and B are
both closed A ∪B is closed.

Corollary 8.1.1 Any union of finitely many closed sets is closed.

Corollary 8.1.2 Any finite subset of a metric space is closed.

Theorem 8.2 Let F be any collection of closed sets. Then ∩F∈FF is closed.
Arbitrary intersections of closed sets is closed.

Proof:
Take any sequence in this set, then any sequence in the intersection will be an
element in all of the closed sets. Therefore, it will converge to an element in the
closed set.

Ex. The Cantor set is closed. Cantor set [0, 1/3]∪[2/3, 1] ⇒ [0, 1/9]∪[2/9, 3/9]∪
[6/9, 7/9] ∪ [8/9, 1]. Intersection of all of these sets is the Cantor sets. Take se-
quence of numbers in Cantor Set, then can use the intersection of closed sets
theorem.

8.2 Open Sets

Def.[Open Sets.] Given any x ∈M and ϵ > 0, let βϵ(x) = {y ∈M |d(x, y) < ϵ}.

βϵ(x) is called the “open ball ” of radius ϵ centered at x. Also called the open
ϵ-neighborhood of x.

A set U ⊆ M is called “open” if for any x ∈ U , ∃ϵ > 0 such that βϵ(x) ⊆ U .
Take any point in the set, small enough epsilon such that the open ball of radius
epsilon is contained within U.

Fact. {} and M are open. Both of these are open and closed. In R, these
are the only two sets that are both “open” and “closed”.
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Proposition 8.2.1 Any open ball is an open set.

Proof:
Take any open ball βϵ(x). Take any y ∈ βϵ(x). Let r = d(x,y). So then r < ϵ.
Let δ = ϵ− r > 0.
Claim βδ(y) ⊆ βϵ(x).
Proof: Take any z ∈ βδ(y), then d(x, z) ≤ d(x, y) + d(y, z) < r + δ. r + δ = ϵ,
so d(x, z) < ϵ.

Corollary 8.2.1 Any open interval (a, b) ⊆ R is open.

Proof (a, b) = β a−b
2
(a+b

2 ): open ball and therefore is open. Have to show there’s

a smaller open interval contained within a bigger open interval.

Theorem 8.3 A set X ⊆M is open if and only if XC is closed. XC =M\X =
{x ∈M |x ̸∈ X}. Denoted by X’ in the text.

Proof : Suppose that X is open. Take any sequence {xn}∞n=1in X
C converging

to x ∈ M . Suppose that x ̸∈ XC . Then x ∈ X. Since X is open, ∃ϵ > 0 such
that βϵ(x) ⊆ X. But for large enough n, d(x, xn) < ϵ [definition of convergence,
therefore closed set]. i.e. xn ∈ βϵ(x) ⊆ X. Therefore, we have a contradiction.

Conversely, suppose XC is closed. We’d like to prove that X is not open.
Then ∃x ∈ X such that ∀ϵ > 0, βϵ(x) ̸⊆ X. Then β1(x) ̸∈ X. Choose
x1 ∈ β1(x) ∩XC . Similarly, β 1

2
(x) ̸⊆ X. Choose x2 ∈ β 1

2
(x) ∩XC . Can con-

tinue: xn ∈ β 1
n
(x)∩XC . Therefore {xn} is a sequence inXC . And d(x, xn) <

1
n .

So xn → x. Since XC is closed, x ∈ XC → Contradiction. Limit of xn is in XC

since it’s a closed set.
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9.1 Properties of Open Sets

Finite union of closed sets is closed, intersection of closed sets is closed. What’s
the appropriate statement for open sets?

1. Any finite intersection of open sets is open.

2. Any arbitrary union of open sets is open.

Facts
(1) If U1, U2, ...Un are open [i.e. finite number of intersection of open sets], Then
so is U1 ∩ ... ∩ Un.
Proof: (U1∩ ...∩Un)

C = UC
1 ∪ ...∪UC

n . This is closed since UC
1 , .., U

C
n is closed.

(2) If (Uα)α∈A is any collection of open sets, then so is ∪α∈AUα.
Proof (∪α∈AUα)

C = ∪α∈AU
C
α is closed since each UC

α is closed.
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9.2 Compact Sets

Compact Sets: Notion of compactness is one of the great advances of modern
math.

Def.[Compact Set]:Let (M,d) be a metric space. Let X ⊆ M be a subset
of M. Let (Uα)α∈A be a collection of open subsets of M. We say that this is an
open cover of X if X ⊆ ∪α∈AUα.

Let M = R and X = {1, 2}, then

1. {(−0, 3)} is an open cover of X.

2. {(1/2, 3/2), (3/2, 5/2)} is also an open cover.

3. {(0, 2), (1, 5)} [the intervals in a set can overlap – no need to be disjoint].

Def. A set X ⊆ M is called “compact” if every open cover U of X has a finite
subcover (i.e. a finite set V ⊆ U such that V is also an open cover of X). [V is
a finite subcollection which covers X. U may be infinite]. Have to consider all
open covers of X and that there exists a finite subcover...

Theorem 9.1 A set X ⊆M is compact ⇐⇒ (if and only if) for any sequence
{xn}∞n=1 ∈ X, there is a subsequence converging to a point in X.

We proved this for closed intervals on the Real Line. But this generalizes that
notion to arbitrary metric spaces. Same criterion of compactness.

Compact is the generalization of “boundedness” to metric spaces that are not
the real line.

Proof:
First suppose that X is compact. Take any sequence {xn}∞n=1∈ X. We have to
show it has a convergent subsequence to a point in X.

Suppose that {xn}∞n=1 has no subsequence that converges to a point in X.
Claim: For all x ∈ X, ∃ϵx > 0 such that βϵx(x) [small enough open ball around
x which...] contains xn for only finitely many n.
Proof: Suppose not. Then ∃x ∈ X such that ∀ϵx > 0, βϵx contains xn for
infinitely many n [negating the above claim]. There exists a point (i.e. x) such
that there is a ball around it which contains xn for infinitely many n. So ∃n1
such that xn1 ∈ β1(x), ∃n1 > n2 such that xn2 ∈ β1/2(x), ∃n3 > n2 such that
xn3

∈ β1/3(x) and so on...

So {xn}∞n=1 is a subsequence such that d(x, xnk
) < 1

k ⇒ xnk
→ x Therefore

contradiction [ ̸ ∃βϵ(x) that contains xn for infinitely many n since xnk
→ x].
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Now returning to the original proof now that this claim has been proved...
Recall that any open ball is an open set [proved in the last lecture]. So the
collection {βϵx(x)}x∈X is an open cover of X. Any little x belongs in βϵx . Since
X is compact it has a finite subcover Bϵy1

(y1), ..., βϵy1 (yk) so that the balls
around them is a cover of X. Each of these balls contains xn for only finitely
many n. And their union contains X. This is impossible, since X contains xn
∀n. Finitely many balls such that their union is an infinite set. Therefore, if
X is a compact set, we’ve shown there’s a convergent subsequence in x that
converges within X. [It’s not the point – rather the indices which are causing
the contradiction: finitely many xn in the subsets: i.e. x1, x5, x21 is in one of
these balls βϵy1 (y1). Finitely many balls, so one of them must contain xn for
some n which goes to infinity → contradiction].

(⇒) Conversely, suppose that every sequence in X has a subsequence that con-
verges to a point in X.

To show: We want to show X is compact.
Let U be any open cover of X.
To show: U has a finite subcover. There’s always an open cover of any set
[take the full space]. Any set that has a finite open cover is vacuously compact.

There are two steps in the proof:
Step 1: ∃ϵ > 0 such that ∀x ∈ X, ∃U ∈ U such that βϵ(x) ⊆ U . U is an open
cover, so any x is contained in one element of U, and there’s a ball around x
containing that x. Claim is even stronger, we have a single ϵ that works for all
x (not simply each x has its own ϵx for the radius of the open ball). U is the
collection of open sets whose union contains the entire set X. Some little ball
around x which contains x. and our claim here is that there’s some ϵ that works
for all x. And that’s where we use the assumption that every sequence has a
convergent subsequence.
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Theorem 10.1 (Bolzano-Weierstrauss Theorem for Metric Spaces) A sub-
set X ⊆M is compact if and only if every sequence in X has a subsequence that
converges to a point in X.

(⇒) We proved that if X is compact, then every sequence has a convergent
subsequence.
(⇐) Remains to prove the converse [if every point has a subsequence that con-
verges to within X, then X is compact].
Suppose that every sequence in X has a subsequence that converges to a point
in X. Let U be an open cover for X.
Step 1: ∃ϵ > 0 such that ∀x ∈ X, ∃u ∈ U with βϵ(x) ⊆ U . [ϵ does not depend
on x! Open set around x of size ϵ that’s a subset of our open cover.].
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Suppose not. Then ∀ϵ > 0, ∃xϵ ∈ X such that ∀U ∈ U , βϵ(xϵ) ̸⊆ U .
Let yn = x 1

n
. Then yn ∈ X ∀n, β 1

n
(yn) ̸⊂ U for any U ∈ U . Since {yn}∞n=1 is a

sequence in X, there is a subsequence {ynk
}∞k=1 converging to some y ∈ X [use

hypothesis that every sequence is a convergent subsequence].
Since y ∈ X, ∃U ∈ U [Union of all Us contain X] such that y ∈ U [union of all
the Us contain X, so y belongs to some U]. Since U is open, ∃ϵ > 0 such that
βϵ(y) ⊆ U [any ball around y is fully contained in the open set]. Choose k so
large that d(y, ynk

) < ϵ
2 and 1

nk
< ϵ

2 .

Take any z ∈ β 1
nk

(ynk
) Then d(y, z) ≤ d(y, ynk

+ d(ynk
, z) < ϵ/2 + 1/nk < ϵ

⇒ z ∈ βϵ(y). Thus, β 1
nk

(ynk
) ⊆ U . Thus, we have a contradiction.

Step 2: Given any ϵ > 0, ∃ a finite collection of points x1, ..., xn ∈ X such
that X ⊆ ∪n

i=1βϵ(xi).
Proof:
Suppose not. Then ∃ϵ > 0 such that X ̸∈ ∪n

i=1βϵ(xi) [X is not contained in the
union of epsilon-raidus balls around xi for a finite subset of xi in X. Take any
x1 ∈ X [if X is empty, then everything is true vacuously]. Since X ̸⊆ Bϵ(x1),
∃x2 ∈ X such that x2 ̸∈ βϵ(x1). That is d(x1, x2) ≥ ϵ. But X ̸∈ βϵ(x1)∪ βϵ(x2)
so ∃x3 ∈ X such that x3 ̸∈ βϵ(x1) ∪ βϵ(x2)
⇒ d(x1, x3) ≥ ϵ, d(x2, x3) ≥ ϵ)
Proceeding inductively, we can get an infinite sequence x1, x2, ... ∈ X such that
d(xi, xj) ≥ ϵ ∀i ̸= j.This implies that no subsequence of {xn}∞n=1 is Cauchy.

Completing the proof
Let U be an open cover of X. By Step 1, ∃ϵ > 0 such that ∀x ∈ X, ∃U ∈ U with
βϵ(x) ⊆ U . By Step 2, ∃x1, ..., xn ∈ X such that X ⊆ ∪n

i=1βϵ(xi) where ϵ is
from Step 1. So by Step 1, ∃U1, U2, ...Un ∈ U such that βϵ(x1) ⊆ U1, βϵ(x2) ⊆
U2, ..., βϵ(xn) ⊆ Un. ⇒ X ⊆ ∪n

i=1βϵ(xi) ⊆ ∪n
i=1Ui. Therefore, X is a compact

set.

Theorem 10.2 (Bolzano-Weierstrauss Therorem for Rn) Any bounded se-
quence [contained in a large ball] of points in Rn has a convergent subsequence.
A bounded sequence means ∃R such that ||x(k)|| ≤ R ∀k.

Proof for R2:
Suppose we have (x1, y1), (x2, y2), ... ∈ R2 is a bounded sequence. Then x1, x2, ...
is a bounded sequence in R, so it has a convergent subsequence xn1

, xn2
, ....

where n1 < n2 < ... is an increasing sequence of positive integers. But y1, y2, ...
is also a bounded sequence in R. Thus yn1 , yn2 , ... is a bounded sequence in
R [using the same n1, n2, ... from the X]. Thus, there is s sub-sub-sequence
ynk1

, ynk2
, ... which converges. But xnk1

, xnk2
also converges because it is a sub-

sequence of a convergent sequence [and subsequences of convergent sequences
converge]. So we’ve proved we have convergence in Rn ⇐⇒ we have coordinate-
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wise convergence. So (xnk1
, ynk1

), (xnk2
, ynk2

) converges in R2. And so on for
Rn...

If you have an infinite sequence of infinite sequences, can find a subsequence
of which each of the infinite sequences converges [diagonalization Cantor argu-
ment].

Theorem 10.3 (Heine-Borel Theorem for Rn) A subset X ∈ Rn is com-
pact if and only if it is closed and bounded.

Proof:
Suppose X is closed and bounded. Take any seq {xn}∞n=1in X. By Bolsano-Weie,
it has a convergence subsequence. Since X is closed the limit of this subsequence
∈ X. This shows that any sequence in has a convergent subsequence in X. This
implies that X is compact [from the generalized Bolsano-Weie Thm we just
proved].
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Theorem 10.4 (Heine-Borel Theorem for Rn) A subset X ⊆ Rn is com-
pact if and only if it is closed and bounded.

We proved that if X ⊆ Rn is closed and bounded, then it is compact (using
Bolzano-Weierstrauss Theorem for Rn and for metric spaces). This is gener-
ally not true for infinite metric spaces: only Rn.

For the opposite direction, it suffices to use the following general result.

Theorem 10.5 Any Compact subset of a metric space is closed and bounded.

Bounded means that ∃R ≥ 0 such that d(x, y) ≤ R ∀x, y ∈M [M is the metric
space].
Proof:
Let X ⊆ M be compact. Take any sequence {xn}∞n=1in X converging to some
point x ∈M . We need to show the limit of {xn}∞n=1is in X: need to use the fact
that X is compact to get that. [Practice for the midterm: think about
what theorems you can use to prove this.]. By Bolzano-Weierstrauss the-
orem for metric spaces, ∃ a subsequence {xnk

} that converges to some point
y ∈ X [result of compactness]. Next step: show that x = y.
Easy Fact: If a sequence in a metric space converges, then any subsequence
converges to the same limit. Follows immediately from the definition of limit.
Thus, y = x and x ∈ X. So any compact set is closed necessarily.

Now we need to prove that it’s bounded. Take any x ∈ X [if empty, then vacu-
ously true], then the set {βn(x) : n = 1, 2, ...} covers X (set of open balls centered
at X) [fact of compact sets]. So this has a finite subcover: βn1

(x), ..., βnk
(x) [why
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is this collection of open balls a cover for X?] Formal way to prove it is to take
any y ∈ X, we need to show y is in one of these balls: d(x, y) < k, then can find
a finite subcover:
Let n = max{n1, ..., nk}, then these balls are becoming larger and then X ⊆
βn(x) [there is exactly one ball that covers X]. This implies d(x, y) < n ∀y ∈ X
⇒ d(y, z) ≤ d(y, x)+d(x, z) < 2n [using the definiton of open set for distances].

Theorem 10.6 Any closed subset of a compact set is compact.

Proof
Let X ⊆ M be compact and F ⊆ X be closed. Take any sequence {xn}∞n=1

in F. We have to prove there’s a subsequence that converges to a point in F: ∃
subsequence {xnk

} converges to a limit x ∈ F .

Since F ⊆ X, {xn}∞n=1is also a sequence in X. Thus, by the BW thm, ∃ a
subsequence {xnk

} that converges to some x ∈ X. Last step: x ∈ F . But
this subsequence {xnk

} is in F, and F is closed, so x ∈ F . Therefore, F is also
compact.

Ex.
Cantor set is compact.

Def.[Relative Metric]
Let (M,d) be a metric space and X be a subset of M. Then (X, d) is also a
metric space, and d is called the “relative metric” on X.
Note: X is always an open subset in the metric space (X,d), but may not be
open in (M,d). X is always open and always closed in (X,d), but may not nec-
essarily be closed or open in the context of (M,d).

Theorem 10.7 A set A ⊆ X is open in (X,d) if and only if A = X ∩ U for
some open set U in (M,d)

Proof
Suppose A ⊆ X is open in (X,d). We need to produce the set U.
Take any a ∈ A, then ∃ϵa > 0 such that BX

ϵa(a) = {y ∈ X|d(a, y) < ϵa} ⊆ A.
Open ball around a in metric space X.
Let U = ∪a∈Aβ

M
ϵa (a) [same radius ϵa, but balls in M rather than in X ⇒ these

open sets are different – ones in M are “bigger”.] Union of open balls around a
in metric space M. Then U is open in M: union of open balls is open.
Claim: A = X ∩ U . Proof: [prove both sides include the other]
Take any a ∈ A, then a ∈ X since X ⊆ A, and a ∈ U since U ⊆ βM

ϵa (a). Thus,
A ⊆ X ∩ U .

Ex. M = R2, X = R. Open ball in X is a circle (or more precisely, the
diameter of this circle), open ball in M is a disk (inside of the circle is filled in.
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Conversely, take any y ∈ X ∩ U , then y ∈ βM
ϵa (a) for some a ∈ A since

y ∈ U = ∪a∈Aβ
M
ϵa (a). Thus, d(a, y) < ϵa, but y ∈ X [y is in then intersec-

tion of X and U], so y ∈ βX
ϵa(a) ⊆ A. Thus X ∩ U ⊆ A.

Conversely, suppose that A = X ∩ U for some U that is open in (M,d). Take
any a ∈ A, then a ∈ U [A = X ∩ U ], then ∃ϵ such that βM

ϵa (a) ⊆ U . Take any
y ∈ X such that d(a, y) < ϵ. Then y ∈ βM

ϵa (a) [within distance ϵ of the bigger
space and therefore in open ball] ⇒ y ∈ U . Thus, we conclude βX

ϵa(a) ⊆ U , but
obviously βX

ϵa(a) ⊆ X, so βX
ϵa(a) ⊆ X ∩ U = A⇒ A is open in (X,d).

Theorem 10.8 A ⊆ X is closed in (X,d) if and only if A = X ∩F for some F
that is closed in (M,d). Same result as for open sets.

[Can try to prove this on your own – just take complements: open sets are
complements of closed sets].

Theorem 10.9 Let X ⊆M , then A ⊆ X is compact in the smaller space (X,d)
if and only if A is compact in (M,d).

Proof:
Suppose A is compact in (M,d). Take any sequence {xn}∞n=1in A. Then ∃
subsequence {xnk

} converging to some x ∈ A. But then this property also
holds in (X, d). Existence of a convergent subsequence doesn’t change if you
move from a smaller sequence to a larger sequence. Compactness is an intrinsic
property of A itself [doesn’t change depending on which space the set is sitting
in].Compactness is a property of the metric space itself – it doesn’t depend on
which space its sitting in.
Converse is similar.
In particular, A is a compact subset of (A,d) if and only if A is compact in
(M,d).
Def. We say that a metric space (M,d) is compact if M is a compact subset
of M. M is always an open set of M, M is always a compact set of M, but M
is not necessarily a compact subset of itself. Compactness is a function of
the metric space: (0,1) [open interval between 0,1] is not a compact metric
space.
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11.1 Continuous Functions

Let (M1, d2) and (M2, d2) be two metric spaces. Let f: M1 →M2 be a function.
Def.[Continuity at a Point]
We say that f is continuous at a point x ∈ M1 if ∀ϵ > 0, ∃δ > 0 such that
d1(x, y) < δ ⇒ d2(f(x), f(y)) < ϵ.
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Effectively want to show d1(x, y) < δ ⇒ d2(f(x), f(y)) < ϵ.

Ex. f : R → R (with Euclidean metric).

f(x) =

{
1
x if x ̸= 0

0 if x = 0
.

Claim: f is continuous everywhere except at 0.

It’s defined everywhere (so it’s a well-defined function), and it’s clear that it’s
continuous everywhere except at that point, but how do we prove this?

Take any x ̸= 0. Take any ϵ > 0. Suppose |x − y| < δ (with δ to be de-
termined later).

y ̸= 0, then |f(x)− f(y)| = | 1x − 1
y | =

|x−y|
|x|∗|y| <

δ
|x|∗|y| <

δ

|x|∗ |x|
2

= 2δ
x2 < ϵ

Now suppose we chose δ so small δ < |x|
2 . Then |x| ≤ |x − y| + |y| < δ + |y| <

|x|
2 + |y| ⇒ |y| > |x|

2 .

Then suppose also that δ < ϵx
2

2 . Conclusion: If we choose δ < min{ |x|
2 , ϵ

x2

2 }
then |x− y| < δ ⇒ |f(x)− f(y)| < ϵ.

For doing these types of proofs, do first part of calculation on a separate sheet
of paper to find which δ you need to choose, and then start with “If we choose
δ = ...” when doing the actual proof.

What about not continuous at 0?
Discontinuity at 0: just have to exhibit one ϵ which works. Take ϵ = 1.
To show: ∀δ > 0, ∃y such that |0− y| < δ but |f(0)− f(y)| ≥ 1.
Proof. Take any δ > 0. Let y = min{1, δ2}. Then |0− y| = |y| ≤ δ

2 < δ, so y is
within the delta ball around 0. But |f(0) − f(y)| = |0 − 1

y | =
1
|y| ≥ 1 because

y ≤ 1. Therefore, we have discontinuity at 0.

Theorem 11.1 (Continuity on Metric Spaces) f is continuous at a point
x if and only if for any sequence {xn}∞n=1converging to x, f(xn) converges to
f(x).

Proof
Suppose f is continuous at x. Take any sequence {xn}∞n=1converging to x.
Take any ϵ > 0, ∃δ > 0 such that if d1(x, y) < δ, ⇒ d2(f(x), f(y)) < ϵ.
Since {xn}∞n=1 → x, ∃N such that ∀n ≥ N , d1(xn, x) < δ. Then ∀n ≥ N ,
d2(f(xn), f(x)) < ϵ. Thus, f(xn) → f(x).

Conversely, suppose that ∀ sequences {xn}∞n=1converging to x, we have that
f(xn) → f(x). WTS f is continuous at x.

Proof
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Suppose not. Then ∃ϵ > 0 such that ∀δ > 0, ∃y such that d1(x, y) < δ, but
d2(f(x), f(y)) ≥ ϵ [means its not continuous].

Take any n, let δ = 1
n , then ∃yn such that d1(x, yn) < δ = 1

2 , but d2(f(x), f(yn)) ≥
ϵ. And ϵ is fixed. but yn → x, but f(yn) ̸→ f(x) ⇒ contradiction.

Def.[Continuous Function]
A function f :M1 →M2 is called continuous if it is continuous at every x ∈M1.

Relation between Continuity and Compactness

Theorem 11.2 Suppose X ⊆ M1 is compact and f : M1 → M2 is continuous.
Then the image of f [i.e. f(x) = {f(x)|x ∈ X}] is a compact subset of M2.

main point: Continuous functions map compact sets to compact sets.
Proof:
Take any sequence {yn}∞n=1 in f(X). Then ∀n, yn = f(xn) for some xn ∈ X.
By compactness of X, ∃ subsequence {xnk

} converging to some x ∈ X. Then
by continuity of f, ynk

= f(xnk
) → f(x) = y ∈ f(X).

Corollary 11.2.1 Suppose that (M,d) is a compact metric space, and f :M →
R is a real-valued function. Then f is a bounded function, meaning that ∃R ≥ 0
such that |f(x)| ≤ R ∀x ∈M .

Proof:
Compact in the real line implies closed and bounded.
Since M is compact and f is continuous, the set f(M) ⊂ R is also compact, and
hence closed and bounded. Therefore f is a bounded function.

Ex.
Consider M = (0,1). Suppose f : M → R so that f(x) = 1

x . Then f is contin-
uous on M, but f is clearly unbounded. But our theorem implies that such a
function can never be constructed on the closed interval [0,1]. If your function
is unbounded, it must have a point of discontinuity somewhere.

Brower-fixed point theorem: any function from disc to a disc or ball into a
ball will have a fixed point. Here’s how Brower proved it.
B = disc and suppose we have a function f : B → B, and suppose there is no
fixed point: no x such that f(x) = x.
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12 October 24

12.1 Continuous Functions

One of the main results: Image of a compact set is also compact.
Midterm: up to last Friday’s lecture.
Similar standard to the practice midterm.

Theorem 12.1 Let (M1, d1) AND (M2, d2) be metric spaces.
Let f :M1 →M2 be a function. Then the following are equivalent:
1. f is continuous.
2. ∀C ⊆M2 closed, f−1(C) = {x ∈M1|f(x) ∈ C} is also closed [inverse image
of a closed set is closed].
3. ∀U ⊆M2 open, f−1(U) is open.

Useful for general topological spaces when you would like to define continuity.
But on metric spaces, these are equivalent notions.
Proof (1) ⇒ (2) ⇒ (3) ⇒ (1). (1) ⇒ (2)
Let C ⊆M2 be closed. Take a sequence {xn}∞n=1in f

−1(C) converging to some
x ∈M1. WTS: x ∈ f−1(C). Since xn ∈ f−1(C), then f(xn) ∈ C. Now xn → x,
and f is continuous, so f(xn) → f(x), but f(xn) ∈ C ∀n and C is closed. Thus,
f(x) ∈ C which means that x ∈ f−1(C). Therefore f−1(C) is closed.

(2) ⇒ (3)
Proving f−1(UC) = f−1(U)C will help us show (2) ⇒ (3).

Let U ⊆ M2 be open. Then UC is closed. By (2), f−1(UC) is closed. Now
if x ∈ f−1(UC) then f(x) ∈ UC and so f(x) ̸∈ U . Thus x ̸∈ f−1(U) which
shows that x ∈ f−1(U)C . So f−1(UC) ⊆ f−1(U)C .

On the other hand, if x ∈ f−1(U)C , then f(x) ̸∈ U and so f(x) ∈ UC and
thus x ∈ f−1(UC).
So f−1(U)C = f−1(UC) is closed. ⇒ f−1(U) is open. (3) ⇒ (1)
Want to show f is continuous at every point in M1.
Take any x ∈M1 and take any ϵ > 0
To Show: ∃δ > 0 such that d1(x, y) < δ ⇒ d2(f(x), f(y)) < ϵ. Have to prove
that there exists such a delta.

Let U = βϵ(f(x)) ⊆M2. Then U is open. Also, f(x) ∈ βϵ(f(x)), so x ∈ f−1(U).
But by (3) f−1(U) is open since U is open. Thus, ∃δ > 0 such that βδ(x) ⊆
f−1(U).
Take any y ∈ M1 such that d1(x, y) < δ. Then by definition, y ∈ βδ(x) ⊆
f−1(U). Thus f(y) ∈ U , and so d2(f(x), f(y)) < ϵ.
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12.2 Uniform Continuity

Def A function f : M1 → M2 is called uniformly continuous if ∀ϵ > 0, ∃δ > 0
such that whenever x, y ∈M1 with d1(x, y) < δ, we have d2(f(x), f(y)) < ϵ.

In continuity δ depends on x. In this one, it only depends on ϵ.

f : R → R, f(x) = x2 is not uniformly continuous. f(x) − f(y) = x2 − y2 =
(x− y)(x+ 1).

Take any δ > 0, let y = x + δ, x > 0. Then f(x) − f(y) = δ(2x + δ) > 1
if x is large enough.

Function f(x) = x is uniformly continuous in R. Can choose δ = ϵ and you’re
done for this example.

f : (0, π2 → R, f(x) = tan(x) not uniformly continuous.
f : (0, 1) → R, f(x) = 1

x not uniformly continuous.

l1 = {(x1, x2, ...)|
∞∑

n=1
|xi| < ∞} and f(x) = x21. d(x, y) =

∞∑
n=1

|xi − yi|. Take

sequence (x, 0, 0, ...) and (x+ δ, 0, 0, ...) differ by δ but f(x)− f(y) can become
arbitrarily large.

Bounded (and closed subset of l1 which is not compact): X = {x ∈ l1|
∞∑

n=1
|xi| ≤

1} since (0, 0, 0, ..., 1, 0, 0, ...) cannot be cauchy.

Theorem 12.2 Let M1 be a compact metric space and M2 be any metric space.
Let f :M1 →M2 be continuous. Then f is uniformly continuous.

Proof:
Take any ϵ > 0. Take any x ∈ M1. There exists δx > 0 such that d1(x, y) <
δx ⇒ d2(f(x), f(y)) <

ϵ
2 [by continuity of f]. Thus, βδx(x) ⊆ f−1(β ϵ

2
(f(x)).

Now {β δx
2
(x)}x∈M1

is an open cover of M1.

So by compactness there is a finite subcover: {β δxi
2

(xi)}ni=1.

Let δ = min{ δx1

2 , .., δxn

2 } > 0. Take any x, y ∈ M1 such that d1(x, y) < δ.
∃i ∈ {1, 2, ..., n} such that x ∈ β δxi

2

(xi) [these sets form an open cover of M1

therefore there exists some i].

Therefore, d1(x, xi) <
δxi

2 . So, d1(y, xi) ≤ d1(y, x) + d1(x, xi) < δ +
δxi

2 ≤ δxi

Thus x, y ∈ β δxi
2

(xi)

⇒ d2(f(x), f(xi)) <
ϵ
2 and d2(f(y), f(xi)) <

ϵ
2 . ⇒ d2(f(x), f(y)) < ϵ.
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13 October 26

13.1 Connected Metric Spaces

Def. A metric space is (M,d) is said to be connected if the only subsets of M
that are both open and closed are ∅ and M.

Theorem 13.1 M is connected ⇐⇒ ̸ ∃ disjoint non-empty open subsets
U, V ⊆ M such that M = U ∪ V [M cannot be written as two disjoint non-
empty subsets].

Proof: Suppose M is connected. If such U, V exist, then they are both open and
closed [Complements are also open since UC ∪ V C is equal to M and therefore
complements are open, therefore U and V are both closed and we assumed they
were open...], and neither = ∅ or M.
Conversely, suppose such U, V do not exist. Let U ⊆ M be a set that is both
open and closed. Then UC is also open, and either U is empty or UC is empty.
Def. Let (M,d) be a metric space. A subset X ⊆ M is called connected if
(X, d) is a connected metric space [i.e. X is connected in the relative metric].

Theorem 13.2 A subset X ⊆ R [usual metric on R] is connected if and only
if whenever a, b ∈ X, and a < b, we have [a, b] ⊆ X. Subset of the real line is
connected if and only if it has this property.

Proof:
Suppose X is connected. Suppose that X does not have the above property.
That is, ∃a, b ∈ X, a < b such that [a, b] ̸⊆ X. Then ∃c ∈ [a, b] such that c ̸∈ X.
Let U = (−∞, c), V = (c,∞), then U and V are open subsets of R, and so X∩U
and X ∩ V are open subsets of X. Both are non-empty, since a ∈ X ∩ U and
b ∈ X∩V . And finally, X = (X∩U)∪(X∩V ) since X ⊆ (X∩U)∪(X∩V ) is ob-
vious and for any x ∈ X, we have x ̸= c (since c ̸∈ X), so x ∈ U ∪V which shows
that (X∩U)∪(X∩V ) ⊆ X. This contradicts the statement that X is connected.

Conversely, suppose X has the given property. Suppose X is not connected.
Then, ∃ open sets U, V ⊆ R such that X ∩ U , X ∩ V are non-empty and
X = (X ∩U)∪ (X ∩ V ) and (X ∩U)∩ (X ∩ V ) = ∅ [X can be decomposed into
two disjoint, non-empty subsets, but U and V need not be disjoint on R – scope
is X, not R].

Take a ∈ X ∩ U , b ∈ X ∩ V , without loss of generality, let’s suppose that
a < b [a ̸= b because disjoint sets]. Let c = sup{x ∈ [a, b]|x ∈ X ∩ U} [this set
is non-empty since a ∈ this set, and it’s bounded because its a subset of [a, b]
⇒ supremum is well defined]. Call this set A. Note that c ∈ X since X has the
given property: [a, b] ⊆ X.
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Then (1) For any n, ∃xn ∈ A so that xn > c − 1
n . Obviously, xn ≤ c, thus

xn → c. So xn ∈ X ∩ U ∀n, xn → c.
Didn’t prove, but it’s a property: if you take the supremum of a set, there’s a
convergent subsequence to the supremum.
But X ∩ U is a closed subset of X [complement of X ∩ U is X ∩ V is open in
X], and c ∈ X, so c ∈ X ∩ U . But X ∩ U is open in X. So ∃ some ϵ > 0 such
that {y ∈ X||c− y| < ϵ} is contained within X ∩ U [X ∩ U is open in X].
Note: c < b since c ∈ [a, b] and c ̸= b because b ∈ X∩V . Choose ϵ < b−c smaller
than ϵ [can make ϵ as small as we want], then c+ ϵ

2 < b. Thus c+ ϵ
2 ∈ [a, b] ⊆ X

but by {y ∈ X||c − y| < ϵ} ⊆ X ∩ U , c + ϵ
2 ∈ X ∩ U . But this contradicts the

definition of c [found a point slightly bigger than c in X ∩ U ].

Corollary 13.2.1 A set X ⊆ R is connected if and only if X is an interval
(may be open, closed, half-open, bounded, or unbounded).

Proof:
Let a = infX, b = supX, then by the given property, you can show that X
must be either [a,b] or (a,b) or [a,b) or (b,a] (works for ∞, −∞ as well).

Corollary 13.2.2 The real line is connected.

Corollary 13.2.3 The real space Rn is connected.

14 October 31

14.1 Connectedness

Theorem 14.1 Let (M1, d1) and (M2, d2) be metric spaces. Let f : M1 →
M2 be a continuous function. Suppose M1 is connected. Then f(M1) is also
connected.

Property of connectedness is intrinsically a property of the metric space [like
compactness]. Doesn’t really matter if you take a subset of it. Proof: [Have to
verify every pair of disjoint sets doesn’t complete the space]
Suppose not. ∃ disjoint sets U, V ⊆ f(M1) such that both U, V are nonempty
and open in f(M1) and f(M1) = U ∪ V .

Note: If we consider f :M1 → f(M1) is continuous. Thus, f
−1(U) and f−1(V )

are open subsets of M1 (inverse image of open maps is open). Both are non-
empty since U and V are non-empty and are contained in f(M1).

Claim: f−1(U) and f−1(V ) are disjoint.
If x ∈ f−1(U)∩ f−1(V ), then f(x) ∈ U and f(x) ∈ V which is impossible since
U and V are disjoint (non-empty, and open).

Claim: f−1(U) ∪ f−1(V ) =M1

It is obvious that f−1(U) ∪ f−1(V ) ⊆ M1. For the opposite conclusion, take
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any x ∈ M1. Then f(x) ∈ f(M1) = U ∪ V . So f(x) ∈ U or f(x) ∈ V
→ x ∈ f−1(U) ∪ f−1(V ).

This gives us a contradiction since it cannot be in the union of two disjoint
non-empty subsets.
Def. A continuous path in a metric space (M,d) is a continuous map f : [0, 1] →
M . (Sometimes, the image of [0, 1] under f is called the “path”).

14.2 Path Connectedness

Def. A Metric space (M,d) is called “path connected” if for any x, y ∈M , there
is a continuous path f : [0, 1] →M such that f(0) → x, f(1) → y.

Theorem 14.2 A path connected metric space is connected.

Proof:
Suppose that M is path-connected but not connected. Let U, V be disjoint non-
empty, open subsets of M such that U ∪ V = M . Since U,V are non-empty, ∃
x ∈ U , y ∈ V . Since M is path connected, ∃ a continuous map f : [0, 1] → M
such that f(0) = x and f(1) = y. Now let X = f([0, 1]) (the image of [0,1]
under f: the path itself). Since [0, 1] is connected and f is continuous, X is
connected. So let U ′ = X ∩ U and V ′ = X ∩ V . Then:

• U ′ ∩ V ′ are disjoint since U ∩ V = ∅

• U ′ and V ′ are open in X [X is a metric space under d, X intersect open
subset of M must be open]

• U ′ ∪ V ′ = X since U ∪ V =M .

• U ′, V ′ are non-empty since x ∈ U ′ and y ∈ V ′.

This shows that X is not connected, and therefore, we have a contradiction.

Corollary 14.2.1 Rd is connected for any d.

Proof:
Take any x, y ∈ Rd. Define f : [0, 1] → Rd as f(t) = (1 − t)x + ty. This is a
continuous map with f(0) = x and f(1) = y [straight line connecting x and y].
Application:
Consider R3 with S2 ⊆ R3 where S = {x ∈ R3 : |x| = 1} where |x| is the
unit norm

√
x21 + x22 + x23. This is the unit sphere in R3. This is a closed and

bounded set (and hence compact).

Let f : S2 → R. be a continuous function. (Think of S2 as the surface of
the earth and f(x) to be the temperature at x).
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Ex. There exists x ∈ S2 such that f(x) = f(−x).
Proof:
Define g(x) = f(x)−f(−x): The difference between the temperature at a point
and its antipodal point (f(−x)). Note f(−x) = f(h(x)) where h(x) = −x. f, h
are both continuous maps, thus f ◦h is also continuous [can prove easily]. Thus,
g is continuous. Take any x ∈ S2. If g(x) = 0, there is nothing to prove.
Suppose g(x) ̸= 0. Note: g(−x) = −g(x). Thus, g(x) and g(−x) have oppo-
site signs. But since S2 is path-connected, and hence connected, g(S2) is also
connected. But g(S2) ⊆ R. Thus g(S2) in an interval. ⇒ 0 ∈ g(S2) so we’re
done.

Theorem 14.3 (Intermediate Value Theorem) Let (M,d) be a connected
metric space. Let f : M → R be a continuous function. If f(x) = a and
f(y) = b for some x, y ∈M and a, b ∈ R, then [a, b] ⊆ f(M) (a ≤ b).

Proof:
f(M) is connected, so the whole interval between the two points are contained
within the image of the function.

15 November 2nd

15.1 Complete Metric Spaces

Def. A metric space (M,d) is said to be complete if every Cauchy Sequence in
M converges to some point in M.

Ex. R with the usual metric is complete [use least upper bound to prove mono-
tone sequences converge, BW to prove that bounded seq has a subsequence, etc.
– took a lot of work].
Ex. Q with the usual metric is not complete.
Why? We proved that

√
2 is not a rational number. We also know that

∀n, ∃ a rational number xn ∈ [
√
2 − −1

n ,
√
2] Then {xn}∞n=1 is Cauchy and

lim
n→∞

xn =
√
2 ̸∈ Q. Just have to exhibit one sequence that is Cauchy but not

convergent to show that it is not complete.

Theorem 15.1 If {xn}∞n=1 is a convergent sequence in any metric space (M,d),
then {xn}∞n=1 is Cauchy.

Proof: Suppose {xn}∞n=1 → x. Take any ϵ > 0. Find N such that ∀n ≥ N ,
d(xn, x) <

ϵ
2 . Then ∀m,n ≥ N , d(xm, xn) ≤ d(xm, x) + d(xn, x) < ϵ.

Ex Rn is complete. Proof: If {xn}∞n=1 is Cauchy in Rn, then each coordinate
is a Cauchy sequence in R, and so convergent. And thus, {xn}∞n=1 converges.
Distance between two coordinates can become arbitrarily small ⇒ the total dis-
tance between two elements of Rn becomes arbitrarily small.
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Theorem 15.2 l1 is complete.

Proof:

Let {a(n)}∞n=1 be a Cauchy sequence in l1. Let a(n) = (a
(n)
1 , a

(n)
2 , a

(n)
3 , ...). Each

coordinate will be a Cauchy sequence in the real numbers. Coordinate-wise
convergence does not imply convergence in l1, but proving coordinate-wise con-
vergence is not difficult in l1.

Step 1: For each i, {a(n)i }∞n=1 is a Cauchy sequence of real numbers.

Proof: Take any ϵ > 0. Find N such that ∀n,m ≥ N , d(a(m), a(n)) < ϵ.

Take any coordinate i. Then ∀m,n ≥ N , |a(m)
i − a

(n)
i | ≤

∑∞
j=1 |a

(m)
j − a

(n)
j | =

d(a(m), a(n)) < ϵ. This proves that for each coordinate, you have a cauchy se-
quence of real numbers that converges.

Thus, ∀i ai = lim
n→∞

a
(n)
i exists. (coordinate-wise, the limit exists).

Let a = (a1, a2, a3, ...). Need to show a ∈ l1. And an → a.

Step 2: a ∈ l1.
Proof: Take any ϵ > 0. Let N be such that ∀m,n ≥ N , d(a(m), a(n)) < ϵ. Then

∀n ≥ N ,
∑∞

i=1 ≤
∑∞

i=1(|a
(n)
i −a(N)

i |+|a(N)
i | =

∑∞
i=1 |a

(n)
i −a(N)

i |+
∑∞

i=1 |a
(N)
i | <

ϵ+
∑∞

i=1 |a
(N)
i

Trick: Take any p ≥ 1. Then ∀n ≥ N ,
∑p

i=1 |a
(n)
i | ≤

∑∞
i=1 |a(n)| ≤ ϵ +∑∞

i=1 |a
(N)
i |

We know lim
n→∞

∑p
i=1 |a

(n)
i | =

∑p
i=1 lim

n→∞
|a(n)i | =

∑p
i=1 |ai| [can exchange limit

and sum for finite sum].

Thus, ∀p,
∑p

i=1 |ai| ≤ ϵ +
∑∞

i=1 |a
(N)
i | [does not depend on p]. Thus, we can

now take p→ ∞ on the left and get
∑∞

i=1 |ai| ≤ ϵ+
∑∞

i=1 |a
(N)
i | <∞. So a ∈ l1.

Step 3: a(n) → a in l1.
Proof: Take any p ≥ 1. Take any ϵ. FindN such that ∀m,n ≥ N , d(a(m), a(n)) <

ϵ. Then
∑P

i=1 |a
(m)
i −a(n)i | ≤

∑∞
i=1 |a

(m)
i −a(n)i | = d(a(m), a(n)) < ϵ (we call this

*).

Now fixing n ≥ N , send m → ∞ in (*). We get
∑P

i=1 |ai − a
(n)
i | < ϵ. But this

holds ∀p. So we conclude that w can send p→ ∞. d(a, a(n)) =
∑∞

i=1 |ai−a
(n)
i | ≤

ϵ. Therefore, l1 is complete.

Def. Let (M,d) be a metric space. We say that (M1, d1) is a completion of
(M,d) if the following three conditions hold:
1) (M1, d1) is complete
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2) M ⊆M1

3) d(x, y) = d1(x, y) if x, y ∈M .
Enlarge the metric space M with more points so that it becomes complete.

Theorem 15.3 Every metric space has a completion.

Equivalence classes of Cauchy Sequences.
Proof: Define two Cauchy Sequences in M to be equivalent if d(xn, yn) → 0 as
n→ ∞.
Let M1 equal the set of equivalence classes. Define d1({xn}∞n=1, {yn}∞n=1) =
lim

n→∞
d(xn, yn) [and can prove this limit always exists by the triangle inequality].

Read from the textbook...
Map from M →M1 such that we can repeat the element in M infinitely many
times to fall into an equivalence class of M1. Need to show every Cauchy
Sequence in M1 has a limit.

16 November 7

16.1 Complete Metric Spaces

Def. Pointwise convergence
Let M be a metric space and {fn}∞n=1 be a sequence of functions from X into
R. We say fn → f pointwise if for each x ∈M , lim

n→∞
fn(x) = f(x).

Fact Even if each fn is continuous and fn → f pointwise, f may not be con-
tinuous.
Ex. Let M = [0, 1]. Let fn(x) = xn. Then fn → f pointwise where f(x) is 1 if
x = 1, and 0 if x ∈ [0, 1). But f is not a continuous function (discontinuity at
1), even though f converges pointwise.

Pointwise convergence: sequence of functions where each function in this se-
quence converges (not each point in one specific function).

Def. We say that fn → f uniformly [stronger than pointwise] if ∀ϵ > 0, ∃N ≥ 1
such that ∀n ≥ N , ∀x ∈M , |fn(x)− f(x)| < ϵ. [This one N works for all x – in
pointwise convergence N depends on x]. Same N works for all x.

Theorem 16.1 If each fn is continuous at a point x ∈ M , and fn → f uni-
formly, then f is continuous at x. In particular, if each fn is continuous every-
where, then f is continuous everywhere.

Proof: Take any ϵ > 0. Find N so large that ∀n ≥ N , ∀y ∈ M , |fn(y) −
f(y)| < ϵ

3 . Since fN is continuous at x, ∃δ > 0 such that if d(x, y) < δ, then
|fN (y)− fN (x)| < ϵ

3 (because fN is continuous at x).
Claim: If d(x, y) < δ, then |f(x)− f(y)| < ϵ (will prove f is continuous at x).
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Proof: Take any y ∈ βδ(x). Then |f(x) − f)y)| ≤ |f(x) − fN (x)| + |fN (x) −
fN (y)| + fN (y) − f)y)| where each of these terms are bounded by ϵ

3 , so ≤
ϵ
3 +

ϵ
3 +

ϵ
3 = ϵ. If only pointwise convergence, wouldn’t have that the third term

is bounded by ϵ
3 (have it for the first two, but not the third).

16.2 Function Spaces

Let M be a compact metric space. Let C(M) denote the space of all contin-
uous functions from M into R. [Only work with compact metric spaces]. For
f, g ∈ C(M), let ρ(f, g) = supx∈M |f(x)−g(x)| [sometimes called the supremum
metric].
Claim: ρ is a metric on C(M).
Proof: For any f, g ∈ C(M), ρ(f, g) ≥ 0 [clear], and ρ(f, g) is finite since f, g
being continous functions on a compact space are bounded. If you don’t have a
compact space, everything will go through, but the distance will sometimes be
∞ (but distance needs to be finite for the definition of a metric).

So ρ(f, g) = ρ(g, f) is also clear.
ρ(f, g) = 0 ⇐⇒ f = g is also clear.
Take f, g, h ∈ C(M), then ρ(f, g) = sup{|f(x) − g(x)|x ∈ M} ≤ sup{|f(x) −
h(x)| + |h(x) − g(x)| : x ∈ M} (via triangle ineaquality). ≤ sup{|f(x) − h(x) :
x ∈M}+ sup{|h(x)− g(x)| : x ∈M} = ρ(f, h) + ρ(h, g).

Theorem 16.2 fn → f in C(M) if and only if fn → f uniformly.

Proof: Suppose that fn → f in C(M), that is ρ(fn, f) → 0. Take any ϵ > 0.
Then ∃N such that ∀n ≥ n, ρ(fn, f) < ϵ which implies ∀n ≥ N , supx |fn(x) −
f(x)| < ϵ ⇒ ∀n ≥ N, ∀x ∈ M , |fn(x) − f(x)| < ϵ [convergence w.r.t. ρ ⇒
uniform convergence].
Conversely, suppose that fn → f uniformly. Then Take any ϵ > 0. Find N such
that ∀n ≥ N , and ∀x ∈M , |fn(x)− f(x)| < ϵ

2 [by uniform convergence]. Thus,
∀n ≥ N , ρ(fn, f) = supx |fn(x)− f(x)| ≤ ϵ

2 < ϵ. Supremum gives us ≤, but we
want < ϵ.

Theorem 16.3 (C(M), ρ) is a complete metric space.

This space comes up in Math 230C (last course in the probability sequence).
Brownian motion is random continuous function that is not differentiable any-
where. Very important space (space of continuous functions of a compact set)
Proof: Let {fn}∞n=1 be a Cauchy sequence in C(M). Take any x ∈ M , then
|fn(x) − fm(x)| ≤ supy∈M |fn(y) − fm(y)| = ρ(fm, fn). From the fact that
{fn}∞n=1 is a Cauchy sequence, {f(x)n}∞n=1 is a Cauchy sequence of real num-
bers and therefore has a limit. Let’s call the limit f(x).
Need to show f(x) ∈ C(M) and {f(x)n}∞n=1 converges to f(x) in the ρ metric.
Take any ϵ > 0. Find N such that ∀n,m ≥ N , ρ(fm, fn) < ϵ. Thus, ∀x ∈ M ,
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∀n,m ≥ N , |fm(x) − fn(x)| < ϵ ⇒ ∀x ∈ M , ∀n ≥ N , |f(x) − fn(x)| =
lim

m→∞
|fm(x)− fn(x)| ≤ ϵ. This shows that fn → f uniformly. ⇒ f ∈ C(M) (f

is continuous) and ρ(fn, f) → 0 [shows both of the things we wanted to show].
Have that (f(x) → R) as this function maps points to R. This space is
complete, but not compact. Any compact metric space is complete [any Cauchy
sequence has a convergent subsequence, therefore it converges to the convergent
subsequence, therefore all Cauchy sequences converge, therefore space is com-
plete].

16.3 Riemann Integration

Let [a, b] be a closed interval. A partition of [a,b] is a finite set P = {x0, ..., xn},
with a = x0 < x1 < x2 < ... < xn = b.

Let f : [a, b] → R be a bounded function (upper bound and lower bound on
the values of f). We define the upper and lower sums of f with respect to the

partition P as U(P, f) =
n∑

i=1

Mi(xi − xi−1), L(P, f) =
∞∑

n=1
mi(xi − xi−1) where

Mi = sup{f(x)|x ∈ [xi−1, xi]} and mi = inf{f(x) : x ∈ [xi−1, xi]} [upper and
lower bound each interval].

17 November 09

17.1 Riemann Integration

f : [a, b] → R
f is bounded, meaning that ∃M ≥ 0 such that |f(x)| ≤M for all x ∈ [a, b].
Take a partition P = {x0, x1, ..., xn}, a = x0 < x1 < ... < xn = b. U(f, P ) =∑n

i=1Mi(xi − xi−1), Mi = sup{f(x)|x ∈ [xi−1, xi]}. U(f, p) is a reasonable
upper bound for the area under the curve.
Similarly, the lower Riemann sum: L(f, P ) =

∑n
i=1mi(xi−xi−1),mi = inf{f(x)|x ∈

[xi−1, xi]}. This is indeed a lower bound on the area under the curve.

Observe that for any partition P , L(f, P ) ≤ U(f, P ) (since mi ≤Mi ∀i).
Proof: Let P be a partition and P ′ = P ∪{x} be a partition with one additional
point x ̸∈ P .
Claim: U(f, P ′) ≤ U(f, P ) and L(f, P ′) ≥ L(f, P ).
Proof: Suppose xi−1 < x < xi. Then U(f, P ′) =M1(x1−x0)+...+Mi−1(xi−1,−xi−2)

= M
(1)
i (x− xi−1) +M

(2)
i (xi − x) +Mi+1(xi+1 − xi) + ...+Mn(xn − xn−1).

M
(1)
i = sup f(y) ≤Mi such that y ∈ [xi−1, x]

M
(2)
i = sup f(y) ≤Mi such that y ∈ [x, xi]

≤ Mi(x1 − x2) + ... +Mi−1(xi−1 − xi−2) + +Mi+1(xi+1 − xi) +Mi(xi − x) +
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...+Mn(xn − xn−1)
So we have Mi(x− xi−1) +Mi(xi − x) =Mi(xi − xi−1)
U(f, P ′) ≤ U(f, P ), Similarly, L(f, P ′) ≥ L(f, P ).
A partition S is called a refinement of P if P ⊆ S. By using the previous claim
and induction, we get that if S is a refinement of P, then U(f, S) ≤ U(f, P ),
and L(f, S) ≥ L(f, P ).

Lemma 17.1 For any two partitions P and S, L(f, S) ≤ U(f, P ).

Proof: Note that P ∪S is a refinement of both P and S [a common refinement].
Thus, L(f, S) ≤ L(f, P ∪ S) ≤ U(f, P ∪ S) ≤ U(f, P ).

Let L = {L(f, P )|P is a partition of [a, b]}. (f, a, b are fixed).
U = {U(f, P )|P is a partition of [a, b]}.

• Define the lower Riemann Integral of f as
∫ b

a
f(x)dx = supL

• And the upper Riemann integral
∫ b

a
f(x)dx = inf U .

We say that f is Riemann integrable if
∫ b

a
f(x)dx =

∫ b

a
f(x)dx and then this is

defined to be
∫ b

a
f(x)dx.

Note that ∀ bounded f ,
∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx.

Proof: For any P , U(f, P ) ≥ L(f, S) ∀S. This implies U(f, P ) ≥
∫ b

a
f(x)dx.

This implies
∫ b

a
f(x)dx ≥

∫ b

a
f(x)dx.

17.2 Riemann’s Criterion

When Riemann integrals exist (i.e. lower integral is equal to upper integral).
Let R[a, b] denote the set of all Riemann integrable functions on [a,b].

Theorem 17.2 Riemann’s Criterion: f ∈ R[a, b] if and only if ∀ϵ > 0, ∃P such
that U(f, P )− L(f, P ) < ϵ.

Proof: Suppose that f ∈ R[a, b]. Take any ϵ > 0. Since
∫ b

a
fdx = supL, ∃P

such that L(f, P ) ≥
∫ b

a
fdx− ϵ

2 [by the definition of the supremum]. And sim-

ilarly, ∃S such that U(f, S) <
∫ b

a
fdx + ϵ

2 [by the definition of the infimum].

Since f ∈ R[a, b],
∫ b

a
fdx =

∫ b

a
fdx.

So U(f, S)−L(f, P ) <
∫ b

a
fdx+ ϵ

2 − (
∫ b

a
fdx− ϵ

2 = ϵ [requires same partition S
and P for Riemann Integrable ⇒ take Refinement].
Thus, U(f, P ∪ S)− L(f, P ∪ S) ≤ U(f, S)− L(f, P ) < ϵ.
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Now suppose there exists such a partition. Suppose that ∀ϵ > 0, ∃P such that

U(f, P )− L(f, P ) < ϵ. Take any ϵ > 0. Find such a P. Then
∫ b

a
fdx ≤ U(f, P )

and
∫ b

a
fdx ≥ L(f, P ). Thus,

∫ b

a
fdx−

∫ b

a
fdx ≤ U(f, P )− L(f, P ) < ϵ [by the

definition of the upper integral and lower integral]. Thus,
∫ b

a
fdx−

∫ b

a
fdx ≤ 0,

but we also know that this is ≥ 0. Therefore, it must be 0.

Theorem 17.3 C[a, b] ⊆ R[a, b]

C is continuous function. Take any f ∈ C[a, b]. By the continuity of f and
the compactness of [a, b], f is bounded. Also by compactness of [a,b], f is uni-
formly continuous. Take any ϵ > 0. Find δ > 0 so small that |x − y| <
δ → |f(x) − f(y)| < ϵ

2(b−a) [by the definition of uniform continuity] for any

x, y ∈ [a, b].

Let P = {x0, ..., xn} be a partition of [a, b] such that xi − xi−1 < δ ∀i. Then
for any i, Mi − mi = supx∈[xi−1,xi] f(x) − infx∈[xi−1,xi] f(x). Need to show
supremum - infimum is bounded by ϵ

2(b−a)

18 November 11

18.1 Riemann Integrable

Theorem 18.1 Any continuous function f : [a, b] → R is Riemann integrable.

Proof: Since f is continuous and [a,b] is compact, f is bounded and uniformly
continuous. Take any ϵ > 0, find δ > 0 so small that for all x, y ∈ [a, b] such
that |x − y| < δ, we have that |f(x) − f(y)| < ϵ

(b−a) [by uniform continuity].

Let P = {x0, ..., xn} be a partition of [a,b] such that (xi − xi−1) < δ∀i.

Let Mi = supx∈[xi−1,xi] f(x) and mi = infx∈[xi−1,xi] f(x). Both are finite since
f is bounded. In the last lecture, we claimed the difference between the two is
bounded by ϵ

(b−a) .

Fix some i. Take any θ > 0. ∃w ∈ [xi−1, xi] so that f(w) > Mi − θ [any-
thing a little less than supremum is in the interval]. ∃z ∈ [xi−1, xi] such that
f(z) < mi + θ [by the definition of the infimum]. Since w, z ∈ [xi−1, xi] and
xi − xi−1 < δ we have that |w− z| < δ. Thus, |f(w)− f(z)| < ϵ

(b−a) because of

our choice of delta. Therefore, if you take Mi −mi < f(w) + θ − (f(z) − θ) =
f(w) − f(z) + 2θ < ϵ

(b−a) + 2θ. [and θ is arbitrary]. Thus, Mi −mi ≤ ϵ
(b−a) .

Thus, U(f, P ) − L(f, P ) =
n∑

i=1

(Mi − mi)(xi − xi−1) ≤ ϵ
(b−a)

n∑
i=1

(xi − xi−1) =

ϵ
(b−a) (b− a) = ϵ

2 < ϵ. Thus by Riemann’s criterion, f ∈ R[a, b].
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18.2 Derivatives and Integrals

Let f : [a, b] → R be a function. We say f is differentiable at a point in x ∈ [a, b]
if there is a number c ∈ R such that ∀ϵ > 0, ∃δ > 0 for which we have ∀y ∈ [a, b],

|y − x| < δ, y ̸= x ⇒ | (f(x)−f(y)
x−y − c| < ϵ.

In other words, lim
y→x

f(x)−f(y)
x−y = c. In this case, we denote c by f ′(x). This c is

unique.

Fact: If f is differentiable at x, then it is continuous at x.
Proof: Take ϵ = 1, then ∃ δ > 0 such that |x − y| < δ, y ∈ [a, b], y ̸= x ⇒
f(x)−f(y)

x−y −f ′(x)| < 1. This can be written as |f(x)−f(y)−f ′(x)(x−y)| < |x−y|
which implies by the triangle inequality |f(x) − f(y)| ≤ (|f ′(x)| + 1)(x − y).
Take any θ > 0. Then for any y such that |x − y| < min{ θ

|f ′(x)|+1 , d}, we have

|f(x)− f(y)| < (|f ′(x)|+ 1)|x− y| < θ.

18.3 Fundamental Theorem of Calculus

Theorem 18.2 (Fundamental Theorem of Calculus) Let f : [a, b] → R
be a differentiable function that is differentiable at all x ∈ [a, b]. Suppose that
f ′ ∈ R[a, b]. Then,∫ b

a
f ′(x)dx = f(b)− f(a)

Proof:

Theorem 18.3 Suppose that f : [a, b] → R is differentiable and f(a) = f(b).
Then ∃ some c ∈ [a, b] where the derivative f ′(c) is 0.

Proof: Suppose that f is constant in the interval [a,b]. Then there is nothing
to prove since f ′(x) = 0 ∀x ∈ [a, b]. Then there are two other cases we have to
consider.

If f is not constant in [a,b], there are two possibilities.

• ∃x ∈ [a, b] where f(x) > f(a) = f(b).

• ∃x ∈ [a, b] where f(x) < f(a) = f(b).

Both case 1 and case 2 may simultaneously hold, but it suffices to show both
independently.

We will only consider Case 1, since Case 2 is similar.
f is differentiable ⇒ f is continuous ⇒ f attains its maximum value in [a, b] (a
is closed and bounded, so compact).

Proof: [a, b] compact ⇒ f is bounded ⇒ supx∈[a,b] f(x) ∈ R, ∃{xn}∞n=1 ∈ [a, b]
so that f(xn) → supx∈[a,b] f(x). Find a convergent subsequence xnk

converging
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to some x∗ ∈ [a, b] [because bounded] which implies f(x∗) = lim
k→∞

f(xnk
) =

supx∈[a,b] f(x) [by continuity of f and by any subsequence converges to the same
limit as the sequence itself].

Let x∗ be such a point (where f is maximized). Since f(x) > f(a) = f(b)
for some x ∈ [a, b], the supremum of f(x): supx∈[a,b] f(x) > f(a) = f(b). Thus,
x∗ ∈ (a, b) [not including the endpoints].

Since f(x∗) ≥ f(y)∀y ∈ [a, b], we have that f(x∗)−f(y)
x∗−y ∀y ∈ [a, b], y < x∗. and

f(x∗)−f(y)
x∗−y ≤ 0∀y ∈ [a, b], y > x∗ [since denominator flips signs].

Take any ϵ > 0. Find δ such that | f(x
∗)−f(y)
x∗−y −f ′(x∗)| < ϵ whenever |x∗−y| < δ,

y ̸= xx, y ∈ [a, b]. Find y such that y > x∗, |y − x∗| < δ, y ∈ [a, b] (∃
such y since x∗ ∈ (a, b)). Then f ′(x∗) = f ′(x∗) − f(x∗)−f(y)

x∗−y + f(x∗)−f(y)
x∗−y and

f ′(x∗)− f(x∗)−f(y)
x∗−y < ϵ and f(x∗)−f(y)

x∗−y ≤ 0. Therefore, together < ϵ.

This holds for all ϵ > 0. So f ′(x∗) ≤ 0. Consider y < x∗, we similarly get
f ′(x∗) ≥ 0.

19 November 14

19.1 Rolle’s and Mean Value Theorem

Theorem 19.1 (Rolle’s Theorem) If f : [a, b] → R is differentiable and
f(a) = f(b), then ∃c ∈ (a, b) where f ′(c) = 0.

Used: continuous function on a compact interval attains a maximum.

Generalization of this result:

Theorem 19.2 (Mean Value Theorem) If f : [a, b] → R is differentiable
then ∃c ∈ (a, b) such that f(a)− f(b) = f ′(c)(b− a).

Proof:
Define g(x) = (f(b)−f(a))x+(b−a)f(x). Then g is also differentiable (because
x is differentiable, f(x) is differentiable, and sum of two differentiable functions
is differentiable). g(a) = (f(b)− f(a))a− (b− a)f(a) = f(b)a− bf(a).

g(b) = (f(b) − f(a))b − (b − a)f(b) = f(b)a − bf(a) = g(a). So g is equal at b
and a, thus, ∃c ∈ [a, b] where g′(c) = 0, but g′(c) = f(b) − f(a) − (b − a)f ′(c)
which gives us the mean value theorem.

Theorem 19.3 (Fundamental Theorem of Calculus) Let f : [a, b] → R be

a differentiable function such that f ′ ∈ R[a, b]. Then f(b)− f(a) =
∫ b

a
f ′(x)dx
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Very few conditions on f ′ – it doesn’t have to be continuous, simply f ′ being Rie-
mann integrable is sufficient. Proof: Take any partition P = {x0, ..., xn} of [a, b].
Then f(b)− f(a) =

∑n
i=1(f(xi)− f(xi−1) [for any partition, you can write f(b)

- f(a) as this sum]. By the mean value theorem, (f(xi)−f(xi−1) can be written
as f ′(yi)(xi−xi−1) for some yi ∈ (xi−1, xi). So we have

∑n
i=1(f(xi)−f(xi−1) ≤∑n

i=1Mi(xi − xi−1) Mi = supx∈[xi−1,xi] f
′(x) and ≥

∑n
i=1mi(xi − xi−1) and

mi = infx∈[xi−1,xi] f
′(x). So we have L(f ′, P ) ≤ f(b) − f(a) ≤ U(f ′, P ).

Thus supP L(f
′, P ) ≤ f(b) − f(a) ≤ infP U(f ′, P ). Where supP L(f

′, P ) is

the lower Riemann integral:
∫ b

a
f ′(x)dx and infP U(f ′, P ) =

∫ b

a
f ′(x)dx. Thus

if f ′ ∈ R[a, b], then f(b)− f(a) =
∫ b

a
f ′(x)dx.

19.2 Countable and Uncountable Sets

Def. A bijection between two sets X and Y is a map f : X → Y which is
1-1 and onto. [One-to-one means f(x) = f(x′) ⇒ x = x′ and onto means that
∀y ∈ Y , ∃x ∈ X such that f(x) = y].

When there is a bijection between X and Y, we say that these sets have the
same cardinality [number of unique elements].

Def. We say that a set X is countable if it has the same cardinality as
N = {1, 2, ...}. That is, ∃ a bijection f : N → X. If we write xi = f(i)
i ∈ N, then x1, x2, x3, ... is called an enumeration of X [this is sufficient for
proving a bijection: define xi = f(xi) for all i].

Theorem 19.4 Any subset of N is countable or finite.

Note: Countable often means countably infinite, but can also be used
to refer to sets that are either countably infinite or finite.. Proof:
Suppose A ⊆ N is infinite. Let a1 be the minimum element of A (any set of N
has a minimum element – this is an axiom of N). Let a2 be the minimum of
A\{a1} and let a3 be the minimum element of A\{a1, a2}. Then a1, a2, a3, ... is
an enumeration of A. Therefore it is countable.
Fact: If X and Y have the same cardinality, and Y and Z have the same
cardinality, then X and Z have the same cardinality.

Corollary 19.4.1 Any subset of a countable set is finite or countable.

Proof: Can take the corresponding subset of natural numbers which aligns with
the subset you chose to achieve a bijection.

Fact: NxN is countable. Can also do f(m,n) = 2m3n is a 1-1 map from NxN
into a subset of N. Can tell that 2m3n maps to a unique value in N by prime
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factorization. In general, any finite number of copies is countable.

Thus any set X that can be written as {xij}∞,∞
i=1,j=1 is countable.

Theorem 19.5 Any arbitrary countable union of countable set is countable.

Proof: See course textbook.

Theorem 19.6 (Cantor’s diagonalization argument) [0,1) is not count-
able.

Suppose not. Let x1, x2, x3, ... be an enumeration of [0,1]. Let 0 ∗ ai,1ai,2ai,3, ...
be the decimal expansion of xi.
Choose b1 ∈ {0, 1, ..., 9} such that b1 ̸= a1,1 [first decimal digit of a1], b2 ∈
{0, 1, ..., 9} such that b2 ̸= a2,2. b3 ̸= a3,3. Let x = 0 ∗ b1b2b3.... Then x ̸= xi ∀i
since x and xi do not match in the ith digit. Therefore, the interval [0, 1] is not
countable – cannot count the numbers.

Theorem 19.7 Q is the set of rational numbers is countable.

Proof:
Q = {0} ∪ {±p

q |p, q ∈ N, q ̸= 0, p, q are coprime }. Therefore, the set of rational
numbers is countable.

Def. A set X ⊆ R is said to have “measure zero” if ∀ϵ > 0, ∃ open intervals

I1, I2, ... such that X ⊆ ∪∞
i=1Ii and

∞∑
i=1

|Ii| < ϵ. [I = (a, b) , |I| = (b− a)]. (Ii is

allowed to be empty).
Effectively means that X is “very small”.

19.3 Lebesgue Characterization Theorem

Theorem 19.8 (Lebesque’s characterization Theorem) A bounded func-
tion f : [a, b] → R is Riemann integrable if and only if the set of discontinuity
points of f has measure zero. That is, f is continuous “almost everywhere”.

Something holds “almost everywhere” if the exception has measure zero.
A single point has measure zero. Any finite number of points has measure zero.
Lebesque’s great revelation was this characterization of measure theory: i.e. the
definition of only countable unions (finite number of unions does not work), but
this was a surprise because Riemann has nothing “countable” in it.
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20 November 16

20.1 Measure Zero

A set X ⊆ R is said to have measure 0 if ∀ϵ > 0, ∃ countable collection of open

intervals I1, I2, ... such that X ⊆ ∪∞
i=1Ii and

∞∑
i=1

|Ii| < ϵ. Where I = (a, b) and

|I| = b− a.
Ex. Any finite set has measure zero. Let X = {x1, .., xn} and Ii = (xi− ϵ

4n , xi+
ϵ
4n ) and |Ii| = ϵ

2n which when you sum up all the Iis you get less than ϵ, hence
this set has measure 0.

Theorem 20.1 If X1, X2, ... has measure zero, then so does ∪∞
i=1Xi [countable

union of countable sets].

Any countable set has measure zero since it’s the countable set of measurable
points. Major difference between measure theory and topology: topology can be
arbitrary (arbitrary intersection of closed sets is closed), but in measure theory,
you need a countable number of unions.
Proof:
Fix ϵ > 0. For each i, let Ii,1, Ii,2, ... be a sequence of open sets such that
Xi ⊆ ∪∞

j=1Ii,j and the sum of the lengths
∑∞

j=1 |Ii,j | <
ϵ
2i .

Consider the collection {Ii,j}i≥1,j≥1. Then ∪∞
i=1Xi ⊆ ∪∞

i=1 ∪∞
j=1 Ii,j . We can

enumerate this collection ∪∪Ii,j as J1, J2, ... (this is simply N×N), and ∪∞
i=1Xi ⊆

∪∞
j=1Jj . Now for any n,

∑n
j=1 |Jj | ≤

∑n′

i=1

∑m′

j=1 |Ii,j | for some large enough

n′,m′. And this is ≤
∑n′

i=1(
∑∞

j=1 |Ii,j |) where
∑∞

j=1 |Ii,j | <
ϵ
2i and

∑n′

i=1
ϵ
2i ≤∑∞

i=1
ϵ
2i = ϵ. Thus ∀n,

∑n
j=1 |Jj | < ϵ ⇒

∑∞
j=1 |Jj | ≤ ϵ.

20.2 Lebesgue Characterization Theorem: I

Theorem 20.2 (Lebesgue Theorem) Let f : [a, b] be a founded function.
Then f ∈ R[a, b] if and only if the set of discontinuity points of f has measure
zero.

Proof:
Need to start with several lemmas.

For any setX ⊆ R, the “oscillation” of f in X is defined as ωf (X) = supx∈X∩[a,b] f(x)−
infx∈X∩[a,b] f(x). X can be any set, but we only take the supremum and infimum
over the closed intersection [a, b]. f is defined on this interval. Leave it unde-
fined if X does not intersect [a, b]. Finite quantity since f is a bounded function.

The oscillation of f at a point x ∈ [a, b] is defined as:

ωf (x) = inf{ωf (I)|I is an open interval containing x}
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Lemma 20.3 f is continuous at x if and only if ωf (x) = 0.

Proof:
Suppose that f is continuous at x. Take any ϵ > 0. Then ∃δ > 0 such that if y ∈
[a, b], |y−x| < δ, then |f(x)−f(y)| < ϵ [by continuity]. Thus if I = (x−δ, x+δ),
then ∀y ∈ I ∩ [a, b], f(y) ∈ (f(x) − ϵ, f(x) + ϵ) ⇒ supy∈I∩[a,b] f(y) ≤ f(x) + ϵ
and inf ... ≥ f(x)− ϵ. Therefore ωf (I) ≤ 2ϵ. But wf (x) ≤ wf (I) ≤ 2ϵ ∀ϵ > 0 [a
number is less than or equal to ϵ for all ϵ > 0, therefore mus be negative or 0,
and the oscillation is non-negative, hence wf (x) = 0]. Thus, wf (x) = 0.

Conversely, suppose that wf (x) = 0. Take any ϵ > 0. Then, since the oscil-
lation wf (x) = inf{wf (I)|I is an open interval containing x}, we have that ∃I
such that x ∈ I, I is an open interval, such that wf (I) < ϵ [any number bigger
than greatest lower bound cannot be a lower bound].

Since I is an open set, ∃δ > 0 such that (x − δ, x + δ) ⊆ I. ⇒ wf ((x −
δ, x + δ)) ≤ wf (I) < ϵ. (Note if X ⊆ Y , then wf (X) ≤ wf (Y )). Then for
any y ∈ [a, b], where |y − x| < δ, we have y ∈ (x − δ, x + δ) which implies
|f(y) − f(x)| ≤ supz∈(x−δ,x+δ)∩[a,b] f(z) − infz∈(x−δ,x+δ)∩[a,b] f(z) = wf ((x −
δ, x + δ)) < ϵ. Similarly, f(x) − f(y) < ϵ [by the same argument as above].
These last two statements together imply |f(x)−f(y)| < ϵ [f(y)−f(x) < ϵ and
f(x)− f(y) < ϵ].

Lemma 20.4 For any ϵ > 0, the set {x ∈ [a, b] : wf (x) < ϵ} is open in [a,b]
(means its an intersection of [a,b] with an open intersection of the real line).

Proof:
Let A = {x ∈ [a, b] : wf (x) < ϵ}. If x ∈ A, then wf (x) < ϵ. ⇒
inf{wf (I)|I is an open interval containing x.} < ϵ ⇒ ∃ an open interval I with
x ∈ I such that wf (I) < ϵ [infimum strictly less than ϵ is critically important].
If we show that I ∩ [a, b] ⊆ A, this will prove that A is open (since I ∩ [a, b] is an
open interval in [a, b]). But this is true since ∀y ∈ I ∩ [a, b], ωf (y) ≤ ωf (I) < ϵ
⇒ y ∈ A. Need to show that for any point in the set, there’s an open interval
containing that point in your set. This whole interval I is contained within A,
therefore, A is open.

Lemma 20.5 x is a continuity point of f if and only if

21 November 18

21.1 Lebesgue Characterization Theorem: II

f : [a, b] ⇒ R bounded function.

Theorem 21.1 (Lebesgue Theorem) f ∈ R[a, b] if and only if the set of
discontinuous points of f has measure zero (f is continuous almost everywhere).
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Lemma 21.2 (Lemma 1) f is continuous at x ⇐⇒ wf (x) = 0

Lemma 21.3 (Lemma 2) {x ∈ [a, b]|wf (x) < ϵ} is open in [a, b] for any ϵ >
0.

Lemma 21.4 (Lemma 3) If wf (x) < ϵ ∀x ∈ [a, b], then ∃ partition P of [a, b]
such that U(f, P )− L(f, P ) < ϵ(b− a).

[If the oscillations are small on the full interval, bounded by some ϵ for all points
in that interval, then there’s a partition into finite parts so that the difference
between the upper and lower sum is bounded by a value.]
Proof:
Take any x ∈ [a, b]. ωf (x) < ϵ ⇒ ∃ open interval x ∈ Jx such that wf (Jx) < ϵ
[open interval containing x that has oscillation less than ϵ]. Then, ∃ open inter-
val Ix ⊇ Jx such that x ∈ Ix and Ix ⊇ Jx. Thus, wf (Ix ≤ wf (Jx) < ϵ. Each x
has an open interval whose oscillation is less than ϵ.

Note that {Ix}x∈[a,b] is an open cover of [a, b] ⇒ ∃ x1, ..., xn ∈ [a, b] such that
[a, b] ⊇ ∪n

i=1Ixi
[closed interval [a, b] is compact ⇒ finite subcover].

Let P = set of endpoints of Ix1
, ..., Ixn

which are in [a, b] together with a and b.
All of these things together form a finite set and this gives us our partition. If
any endpoints are outside of [a, b], we can simply discard them.

Arrange the elements of P as a = y0 < y1 < ... < ym = b. Take any 1 ≤ i ≤ m.
Claim: [yi−1, yi] ⊆ Ixj

for some j.
Proof:
Take yi−1+yi

2 ∈ ∪n
j=1Ixj ⇒ yi−1+yi

2 ∈ Ixj for some j. This implies that the left

endpoint of Ixj
≤ yi−1 and the right endpoint of Ixj

≥ yi ⇒ [yi−1, yi] ⊆ Ixj
.

⇒ wf ([yi−1, yi]) ≤ wf (Ixj
). We have been able to partition [a, b] so that the

oscillation of each block of the partition is less than ϵ, and the finite number of
partitions comes from compactness of [a, b].

U(f, P )−L(f, P ) =
∑n

i=1 supx∈[yi−1,yi] f(x)(yi−yi−1)−
∑n

i=1 inf x ∈ [yi−1, yi]f(x)(yi−
yi−1) =

∑n
i=1 wf ([yi−1, yi])(yi − yi−1) < ϵ

∑n
i=1(yi − yi−1) = ϵ(b− a)

Proof of Lebesgue’s Theorem First, suppose that f ∈ R[a, b]. Let X = set of
discontinuity points of f .
To Show: X has measure zero.
By Lemma 1, X = {x ∈ [a, b]|ωf (x) > 0} = ∪∞

n=1{x ∈ [a, b]|ωf (x) ≥ 1
m}.

Since a countable union of sets of measure zero has measure zero, it suffices to
prove that each Xm has measure zero. If you can prove for any m, ∪∞

n=1{x ∈
[a, b]|ωf (x) ≥ 1

m} has measure zero, then we’re done. Take any m. We now
show that Xm has measure 0. Take any ϵ > 0, we have to find a count-
able cover of open sets that has ... Since f ∈ R[a, b], there is a partition
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P of [a, b] such that U(f, P ) − L(f, P ) < ϵ
2m [by Riemann’s criteria, there

is such a partition]. Write Xm = A ∪ B where A = Xm ∩ P and B =
Xm\P . Xm is potentially an infinite set, it may also be an empty set, but
we divide it into two parts and treat them separately. P = {y0, ..., yn}. If
x ∈ B, then x ∈ (yi−1, yi) for some i. Let i1, ..., ik be the indices i such
that (yi−1, yi) intersects Xm. Then ∪k

j=1(yij−1 , yij ) ⊇ B. But if x ∈ B and

x ∈ (yi−1, yi), then wf ([yi−1, yi]) ≥ wf ((yi−1, yi)) ≥ wf (x) ≥ 1
m since x ∈ Xm.

⇒
∑k

j=1 wf ([yij−1 − yij ])(yij − yij−1) ≥
∑k

j=1
1
m (yij − yij−1). If you just take

those intervals that intersect with Xm in their interior, this inequality holds.
Moreover,

∑k
j=1 wf ([yij−1

− yij ])(yij − yij−1
) ≤

∑n
i=1 wf ([yi−1, yi])(yi− yi−1) =

U(f, P )−L(f, P ) < ϵ
2m . Thus,

∑k
j=1(yij −yij−1

) < ϵ
2 . But {(yij −yij−1

)}kj=1 is
a collection of open intervals that covers B. Now A is a finite set, and so it has
measure zero. Recall A = Xm ∩P and B = Xm\P . So we can find a countable
(actually finite since A is a finite set) cover of A by open intervals with total
length < ϵ

2 . Putting this together with {(yij−1 , yij )}ki=1 we get a cover of Xm

by finitely many open intervals with total length < ϵ. Since ϵ is arbitrary, Xm

has measure zero. Therefore, we’ve proved one way...

Used countability to say that if each Xm has measure zero, then the countable
union of them has measure zero.

Question about oscillations: what is the oscillation at a point? wf (x) =
inf{wf (I)|I open interval containing x}.
Converse is also true..

22 November 28

22.1 Lebesgue Characterization Theorem: III

Remaining part of the proof of the Lebesgue’s characterization theorem.
Suppose f : [a, b] → R is a bounded function which is continuous almost every-
where (i.e. the set of discontinuity points has measure zero).
To Show: f is Riemann Integrable.
Proof: Let Xm = {x ∈ [a, b]|wf (x) ≥ 1

m}. Then the set of discontinuity points
= {x|wf (x) > 0} = X = ∪∞

m=1Xm.

We know that X has measure zero. For each m, Xm ⊆ X. So Xm also has
measure zero (since any covering of X by open sets is also a covering of Xm).
Fix any ϵ > 0. We will now find a partition P such that U(f, P )−L(f, P ) < ϵ.
By Riemann’s Criterion, this shows that f is Reimann integrable.

Find m such that b−a
m < ϵ

2 . If wf ([a, b]) = 0, then f is constant in [a, b] and
therefore Reimann Integrable (R.I.). So, let’s assume that wf ([a, b]) > 0. Since
Xm has measure zero, ∃ open intervals I1, I2, ... such that Xm ⊆ ∪∞

i=1Ii and
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∞∑
i=1

|Ii| < ϵ
2wf ([a,b])

.

Recall that by Lemma 2, Xm is closed in [a, b]. But [a, b] is compact. So Xm

is compact (any closed subset of a compact set is compact). Thus, {Ii}∞i=1

has a finite subcover of Xm. So ∃n such that Xm ⊆ ∪n
i=1Ii. Note that

n∑
i=1

|Ii| <
∞∑
i=1

|Ii| < ϵ
2wf ([a,b])

. Now, note that ∪n
i=1Ii is a union of disjoint open

intervalsJ1, ..., Jk (prove this by induction).

Moreover,
∑k

i=1 |Ji| ≤
n∑

i=1

|Ii| (again, prove by induction on n). Take the end-

points of these intervals that are in [a, b] together with a,b (i.e. take the end-
points of the open intervals along with the points a,b). This gives a partition
Q = {y0, y1, ..., yl} of [a, b].

Take any 1 ≤ i ≤ l. Then either (yi−1, yi) is contained in of the J ′
js (Type 1:

i.e. it is strictly inside [a,b]) or [yi−1, yi] ⊆ [a, b]\Xm (Type 2: i.e. the whole
interval does not intersect Xm – is outside the interval).

Recall: U(f,Q) − L(f,Q) =
∑l

i=1 wf ([yi−1, yi])(yi − yi−1) [oscillation of f in
this interval multiplied by the length of the interval].
=

∑
i∈Type1 +

∑
i∈Type2 – can break up the sum into these two parts.

If i ∈ Type 1, then (yi − yi−1) ≤ the length of the Jj containing this inter-

val, and wf ([yi−1, yi]) ≤ wf ([a, b]). Thus,
∑

i∈type1 ≤ wf ([a, b])
∑k

j=1 |Jj | <
wf ([a, b])

ϵ
2wf ([a,b])

= ϵ
2 .

If i ∈ Type 2, then wf (x) <
1
m ∀x ∈ [yi−1, yi]. By Lemma 3, we can find a

partition Pi of [yi−1, yi] such that U(f, P ) − L(f, P ) < yi−yi−1

m . Refine Q by
subdividing [yi−1, yi] into Pi. Do this ∀ Type 2 i. Let P be this refinement
of Q (take the type 1 intervals – leave them as they are – and take the type 2
intervals and subdivide them). U(f, P ) − L(f, P ) = Contributions from type
1 + Contributions from subintervals of type 2. Upper bound on contributions
from type 1 is bounded by ϵ

2 (keeping them as they are – not changing them).

Contributions from type 2 ≤
∑

lengths
m ≤ b−a

m < ϵ
2 after doing the partitions is

the sum of the lengths divided by m. In Type 2, intervals are all disjoint, total

contribution is the sum across all i for U(f, Pi)−L(f, Pi) <
yi−yi−1

m =
∑

lengths
m .

23 November 30

23.1 Lebesgue Integration

This will be covered properly in Math 172. Riemann Integral has some nice
properties:
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•
∫ b

a
(f + g)dx =

∫ b

a
fdx+

∫ b

a
gdx

One problem with the Riemann integral is that {fn}n≥1 is a sequence of func-
tions converging pointwise to f , then f may not be Riemann integrable even if
each fn is Riemann Integrable and the entire sequence is uniformly bounded. If
not closed under pointwise limits, then there are issues.
Example: Let q1, q2, q3, ... be an enumeration of the rational numbers in [0, 1].

Let fn(x) be 0 if x ∈ {q1, ..., qn} and 1 otherwise. fn : [0, 1] → R.
∫ 1

0
fn(x)dx = 1

since fn = 1 almost everywhere (except on a finite set – measure zero). Each fn

is Riemann Integrable, but fn → f pointwise where f(x) =

{
0 if x ∈ Q ∪ [0, 1]

1otherwise
.

In any interval [x, y] ⊆ [0, 1], x < y, supt∈[x,y] f(x) = 1 inft∈[x,y] f(t) = 0. This
implies for any partition P, U(f, P ) = 1 and L(f, P ) = 0. Therefore, f is not
Riemann integrable.

23.2 Lebesgue Outer Measure

For any A ⊆ R, define λ∗(A) = inf{
∑∞

i=1 |Ii||I1, I2, ... are open intervals and
A ⊆ ∪∞

i=1Ii}. Can define the length of a set to be this value.

Let’s verify this works for intervals.

Lemma 23.1 If A = [a, b] for some a < b, then λ∗(A) = b− a

Proof:
Take any ϵ > 0. Then A ⊆ (a−ϵ, b+ϵ). Thus λ∗(A) ≤ (b+ϵ)−(a−ϵ) = b−a+2ϵ.
Thus, λ∗(A) ≤ b− a.

Take any sequence of open intervals I1, I2, ... such that A ⊆ ∪∞
i=1Ii, and A is a

closed interval, so by compactness of A, ∃n such that A ⊆ ∪n
i=1Ii. Recall that

∪n
i=1Ii can be written as a disjoint union of open intervals J1, ..., Jk and also

that
∑k

i=1 |Ji| ≤
∑n

i=1 |Ii|.

Now since J1, ..., Jk are disjoint open intervals, and their union contains [a, b],
one of them has to entirely contain [a, b]. The length of that Ji must be ≥ b− a
(must actually be strictly bigger..). Thus b − a ≤

∑k
i=1 |Ji| ≤

∑n
i=1 |Ii| ≤∑∞

i=1 |Ii|. Thus, b− a ≤ λ∗(A). This is because our collection Ii is any collec-
tion of open intervals whose union contains [a, b]. Therefore, b− a ≤ λ∗(A).

• λ∗(∅) = 0

• If A ⊆ B, then λ∗(A) ≤ λ∗(B)
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Want: If A1, A2, ... are disjoint sets, then λ∗(∪∞
i=1Ai) =

∑∞
i=1 λ

∗(Ai) (denote
this statement as (*). Unfortunately, this is not true (because of the axiom of
choice).

Theorem 23.2 (*) is not true.

Proof:
Define a relation ∼ on [0,1] as follows: x ∼ y if x − y ∈ Q. Can easily check
that this is an equivalence relation, which means that
Meaning of an equivalence relation.

1. x ∼ x

2. x ∼ y ⇒ y ∼ x

3. x ∼ y, y ∼ z, ⇒ x ∼ z.

Therefore, we can break up a set into equivalence classes.

Fact: Any equivalence relation on any set splits the set into disjoint equivalence
classes. (An equivalence class is the set of all y such that y ∼ x for some given
x). Two equivalence classes cannot overlap, and one element can only be in a
single equivalence class.

By the axiom of choice, there is a set A ⊆ [0, 1] consisting of exactly one element
from each equivalence class. Such sets are called Vitali sets.

The axiom of choice says that given any collection of sets, there is a set consist-
ing of exactly one element from each of these sets that you have. Consistent of
other axioms of set theory, but cannot be proven from the other axioms. The
problem arises, because not all collections are sets.

Russell’s Paradox: There cannot be a set of all sets.
Proof:
Suppose not. Let A be the set of all sets. If we define B = {x ∈ A|x ̸∈ x} is
also a set. If B ∈ B, then B ̸∈ B. On the other hand, if B ̸∈ B, then B ∈ B.
So in either case, you arrive at a contradiction.

Claim: If (*) is true (where (*) is the statement that for any disjointA1, A2, ... ⊆
R), λ∗(∪∞

i=1Ai) =
∑∞

i=1 λ
∗(Ai)), then λ∗(A) cannot be zero and cannot be

nonzero.
Proof:
For any r ∈ Q ∩ [−1, 1], let A(r) = A+ r (set of {a+ r|a ∈ A}.

Easy: λ∗(A+ r) = λ∗(A). [translate of A].
Claim: {Ar}r∈Q∩[−1,1] are disjoint.
Proof:
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(next class)

Proof of Claim 1:
Let B = ∪r∈Q∩[−1,1]Ar [by claim 2 disjoint]. ⇒ λ∗(B) =

∑
r λ

∗(Ar)
=

∑
r λ

∗A

=

{
∞ if λ∗(A) > 0

0 if λ∗(A) = 0

Claim: [0, 1] ⊆ B ⊆ [−1, 2] ⇒ 1 ≤ λ∗(B) ≤ 3.

24 December 2

24.1 σ−algebras

x ∼ y if x − y ∈ Q, x ∈ [0, 1]. A = a set which consists of exactly one element
from each equivalence class.

Ar = A+ r = {a+ r|a ∈ A} for r ∈ Q ∪ [−1, 1]. So λ∗(Ar) = λ∗(A) ∀r.

Claim: Ar ∩As = ∅ if r ̸= s
Proof:
Suppose x ∈ Ar ∩As. Then x ∈ Ar ⇒ ∃b ∈ A such that x = b+ r.
x ∈ As ⇒ ∃c ∈ A such that x = c+ s.
Thus, b+ r = c+ s⇒ b− c ∈ Q\{0} (since r, s ∈ Q, r ̸= s). But then b, c ∈ A,
b ̸= c and b ∼ c. This is impossible. [No two elements of A can be equal and
equivalent]. Let B = ∪r∈Q∩[−1,1]Ar. This is a countable disjoint union of sub-
sets of R.

Claim: λ∗(B) ̸=
∑

r∈Q∩[−1,1] λ
∗(Ar)

Proof:

Suppose not. Then λ∗(B) =

{
∞ if λ∗(A) > 0

0 if λ∗(A) = 0
. We will show that both cases

are impossible.

Claim: [0, 1] ⊆ B ⊆ [−1, 2]
λ∗(B) would be between 1 and 3 since λ∗([0, 1]) = 1 and λ∗([−1, 2]) = 3.

Take any x ∈ [0, 1]. Then x ∼ b for some b ∈ A. ⇒ x = b + r for some b ∈ A
and r ∈ Q. But r = x− b ∈ [−1, 1] since x, b ∈ [0, 1]. Thus r ∈ Q ∩ [−1, 1] and
x ∈ Ar. Therefore, [0, 1] ⊆ B.

WTS B ⊆ [−1, 2]. Take any x ∈ B. Then x ∈ Ar for some r ∈ Q ∩ [−1, 1] ⇒
x = b+ r for some b ∈ A and r ∈ Q ∩ [−1, 1]. A ⊆ [0, 1], so b ∈ [−1, 2].

So we just proved that the length of the union of disjoint subsetes under
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Lebesgue’s outer measure is not always equal to the sum of the measures of
each disjoint subset.

Theorem 24.1 We cannot define a notion of length that has all the following
properties:

1. 0 ≤ length(A) ≤ ∞ for all A ⊆ R

2. If A ⊆ B, then length(A) ≤ length(B)

3. If B is a translate of A, then length(B) = length(A)

4. length([a, b]) = b− a for any a < b

5. If A1, A2, ... are disjoint, then the length(∪∞
i=1Ai =

∑∞
i=1 length(Ai)

No sensible way to define length of a set for arbitrary sets (if we assume the
axiom of choice).

Legesgue wanted to define a new integral. Needed the length of an arbitrary
subset of the real numbers (i.e. the length where some function takes a specific
value). Then multiply this length by the function value (and repeat for all
values).

f(x) =

{
1 if x /∈ Q
0ifx ∈ Q

Then f(x) takes value 1 in the irrational numbers: this

set has measure 1, so 1*1 = 1. f(x) takes value 0 in the rational numbers which
has measure 0: 0*0 = 0. So 0 + 1 = 1 which is the Lebesgue integral of this
function.

Theorem 24.2 (Sigma Algebra) A subset F of the power set of R is called
a σ-algebra (or σ − field) if

1. ∅ ∈ F

2. A ∈ F ⇒ AC ∈ F

3. A1, A2, ... ∈ F ⇒ ∪∞
i=1Ai ∈ F

Ex. {∅,R} is a σ − algebra.
Ex. P (R) the power set of R is a σ − algebra.

24.2 Borel σ−algebras

Borel σ − algebra
B(R) is the set of all subsets A ⊆ R such that A ∈ F for every σ − algebra F
that contains all the open sets.
P (R) is the power set of R contains all the open sets. Every open set, singleton,
∅, R, and closed set is in B(R).
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Lemma 24.3 B(R) is a σ − algebra.

Proof:
(1) ϕ ∈ F ∀F ⇒ ϕ ∈ B(R).

(2) If A ∈ B(R), then for any σ − algebraF containing all open sets, A ∈ F .
Thus AC ∈ F . And so, AC ∈ B(R).

(3) If A1, A2, ... ∈ B(R), then for any σ − algebra F containing all open sets,
A1, A2, ... ∈ F ⇒ ∪∞

i=1Ai ∈ F ⇒ ∪∞
i=1Ai ∈ B(R). So B(R) is a σ − algebra.

Fact: If F is a σ − algebra and A1, A2, ... ∈ F then ∪∞
i=1Ai ∈ F .

Proof: ∩Ai = ((∩Ai)
C)C = (∪AC

i )
C .

[a, b] = ∩∞
n=1 = ∩∞

n=1(a− 1
n , b+

1
n ), so all closed sets are ∈ B(R).

Theorem 24.4 If A1, A2, ... ∈ B(R) are disjoint, then λ∗(∪∞
i=1Ai) =

∑∞
i=1 λ

∗(Ai).
If A ∈ B(R) we denote λ∗(A) by λ(A) and this is called the Lebesgue measure
of A.

24.3 Measurable functions

Def A function f : R → R is called Borel-measurable (or simply, “measurable”)
if for any B ∈ B(R), the set f−1(B) = {x ∈ R|f(x) ∈ B} is also in B(R).

Inverse image of any Borel set is Borel. This encompasses any function you’ll
see. The most complicated neural net is also a measurable function.

The indicator of the set A we constructed is not measurable (1 if in A, 0 other-
wise).

Lemma 24.5 Any continuous function is measurable.

Lemma 24.6 If {fn}∞n=1 is a sequence of measurable functions converging point-
wise to a limit f, then f is measurable.

Anything that is a limit of continuous functions is measurable (by pointwise
convergence) is measurable. This is an incredibly strong statement.

25 December 5

25.1 Measurable Functions

B = Borel sigma algebra on R = smallest σ−algebra containing all open sets
= intersection of all σ-algebra on R that contain all open sets = σ−algebra
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generated by the collection of open sets.

B = σ−alg. generated by all intervals of the form (x,∞) = σ−alg. generated
by intervals of the form (−∞, x).
Proof:
Def. Let A be a collection of subsets of R. The σ−algebra generated by A is
the set of all subsets of R that belong to every σ−algebra containing A as a
subset.

Let F be the σ−algebra generated by all intervals like (x,∞).

Proof of F = B(R):
B(R) contains ∞∀x since B(R) contains all open sets. So B(R) is a σ−algebra
containing (x,∞) ∀x. Therefore, any A ∈ F must be an element of B(R).
Therefore F ⊆ B(R).

Take any A ∈ B(R). To show: A ∈ F .
Know that (x,∞) ∈ F ∀x and F is a σ−algebra. ⇒ ∀x < y, (x,∞)\(y,∞) ∈ F :
the difference of two sets is in F = (x, y]. σ−algebras closed under addition,
unions, subtractions, intersections, complements, countable unions, countable
intersections are in the σ−algebra. ⇒ (x, y) = ∪∞

n=1(x, y − 1
n ) ∈ F .

Fact: Any open subset of R is a countable union of open intervals. (exercise –
use the rationals).
⇒ any open set ∈ F ⇒ B(R) ∈ F .

Recall: A function f : R → R is called (Borel) measureable if ∀BB ∈ B(R),
f−1(B) ∈ B(R)

Proposition 25.0.1 Any continuous function is measurable.

Proof:
Let F = {B ⊆ R)|f−1(B) ∈ B(R)}.
Claim: F is a σ−algebra.
Proof:
f−1(∅) = ∅ ∈ B(R), and so ∅ ∈ F .

Suppose B ∈ F . Then f−1(B) ∈ B(R). Then f−1(BC) = {x : f(x) ∈ BC} =
{x|f(x) ̸∈ B} = (f−1(B))C ∈ B(R) ⇒ BC ∈ F [inverse image of complement
of B is in B(R)].

Suppose B1, B2, ... ∈ F . Then f−1(B1), f
−1(B2), ... ∈ B(R). So f−1(∪∞

i=1Bi) =
∪∞
i=1f

−1(Bi) ∈ B(R) ⇒ ∪Bi ∈ F .

Since f is continuous, f−1(B) is open for all open B. Therefore, f−1(B) is a
Borel set for all open B. Therefore, any open set belongs to F ⇒ B(R) ⊆ F .
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This proves our claim.

This shows the class of measurable functions contains at least all continuous
functions. Our next goal is that all point-wise limits of measurable functions is
itself measurable.

Lemma 25.1 Let f1, f2, ... be measurable functions. Let g(x) = infn≥1 fn(x)
∀x ∈ R. Suppose that g(x) ∈ R ∀x [infimum is finite]. Then g is measurable.

Infimum of a collection of measurable functions is measurable.
Proof:
Take any t ∈ R. Then g(x) < t if and only if fn(x) < t for some n. Thus,
{x|g(x) < t} = ∪∞

n=1{x|fn(x) < t}. {x|g(x) < t} = g−1((−∞, t)) ∈ B(R) and
{x|fn(x) < t}. {x|g(x) < t} = f−1

n ((−∞, t)) ∈ B(R).

Since the set (∞, t), t ∈ R generate B(R), this shows (by a similar argument as
in the previous proof) that g is measurable.

Up and including to Lebesque Characterization Theorem is on the exam.

Lemma 25.2 If fn is measurable for all n and g(x) = lim supn→∞ fn(x) is
finite (i.e. is in R) ∀x, then g is measurable.

Proof:
g(x) = infk≥1 hk(x) where hk(x) = supn≥k fn(x). By a counterpart of the pre-
vious lemma, each hk is measurable. Thus, g is measurable (pointwise lim sup
gives us a measurable function).

Theorem 25.3 If {fn} is a sequence of measurable functions converging point-
wise to a function f, then f is measurable.

Proof :
f(x) = limn→∞ fn(x) = lim supn→∞ fn(x)

Therefore, the pointwise sequence of any measurable functions is measurable.

26 December 7

26.1 Lebesgue Integration of Measurable Functions

B(R): Borel σ−algebra, f : R → R (measurable function), λ = Lebesgue mea-
sure on B(R).
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How to define
∫∞
−∞ f(x)dx for all measurable functions.

Def. A measurable function f is called “simple” if it takes only finitely many
values.
Ex. The step function on limited domain.

Ex.

{
1 if x ∈ Q
0 if x ̸∈ Q

Let {a1, a2, ..., an} be the set of possible values of f. Let Ai = {x : f(x) = ai} =
f−1({ai}). Since f is measurable, Ai ∈ B(R).

Define
∫∞
−∞ f(x)dx =

∑n
i=1 aiλ(Ai) provided that there is no ∞ − ∞ in this

sum. Some λ(Ai) may be infinity – and this is ok – but we have a problem if two
of the coefficients in front of λ(Ai) are non-zero. Infinity is just the sequence as
n→ ∞, but can go to ∞ at different rates.

In particular, if f is a non-negative simple function, then the sum is always
well-defined (may be ∞). Then

∫∞
−∞ f(x)dx = 1 · λ(R\Q) +− · λ(Q) = ∞

If one of the ai’s is zero, we define the corresponding term aiλ(Ai) to be zero
even if λ(Ai) = ∞.

Ex. f(x) =

{
1 if 0 ≤ x ≤ 1

0if x ̸∈ [0, 1]
.

Then
∫∞
−∞ f(x)dx = 1 · λ([0, 1]) + 0 · λ(R\[0, 1]) = 1.

Let f : R → R be a nonnegative measurable function. Let SF+(f) = {g :
g is a non-negative simple function and g(x) ≤ f(x)∀x}.

Define:
∫∞
−∞ f(x)dx = sup{

∫∞
−∞ g(x)dx|g ∈ SF+(f)}.

Let f : R → R be any measurable function. Let f+(x) =

{
f(x) if f(x) ≥ 0

0 if f(x) < 0

Similarly, define f−(x) =

{
−f(x) if f(x) ≤ 0

0 if f(x) > 0
.

Observe f = f+ − f−, f+, f− are both nonnegative measurable functions.
|f | = f+ + f−.

We know how to compute
∫∞
−∞ f+(x)dx and

∫∞
−∞ f−(x)dx. If at least one of

these integrals is finite, we define the integral of f as:
∫∞
−∞ f(x)dx =

∫∞
−∞ f+(x)dx−∫∞

−∞ f−(x)dx [so we don’t have the problem of ∞ − ∞]. If both integrals are
infinite, we say the Lebesgue integral is not defined.
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Ex. f(x) =

{
0 if x ≤ 0
sin x
x if x > 0

. Then f+ and f− are both ∞. Observe that

limL→∞
∫ L

0
sin x
x dx = π

2 , but if you define the area under the curve differently
(or depending on how you sum this area), you will get an undefined Lebesgue
integral.

26.2 Monotone Convergence and Dominated Convergence

Theorem 26.1 Suppose that f : [a, b] → R is a bounded, Riemann integrable
function. Then ∃g : [a, b] → R which is measurable, equal to f almost ev-
erywhere, and the Lebesgue integral of g equals the Riemann integral of f. In
particular, if f is measurable, then the Lebesgue integral = the Riemann integral.

Def.[Lebesgue Integral on an Interval] Given a function g : [a, b] → R, the

Lebesgue integral
∫ b

a
g(x)dx is defined to be the integral

∫∞
−∞ g(x)dx where

g(x) := 0 if x ̸∈ [a, b] provided that this g is measurable and
∫∞
−∞ g(x)dx exists.

Lots of functions that are Lebesgue integrable and not Riemann integrable.
Works for any set where you can define a measure on that set, then for any
real-valued measurable function, you can define a Lebesgue integrable [not just
on the real line]. Can work for Rd, manifolds, or infinite dimensional spaces.

For Riemann integrals, it’s hard to exchange limits and integrals (need uniform
convergence). For Lebesgue integrals, it’s a bit better.

Theorem 26.2 (Monotone convergence Theorem) Let {fn}n≥1 be a se-
quence of non-negative measurable functions increasing to a function f. (That
is ∀x ∈ R, f1(x) ≤ f2(x) ≤ f3(x) ≤ ... and lim inf fn(x) = f(x)). Then∫∞
−∞ f(x)dx = limn→∞

∫∞
−∞ fn(x)dx.

Theorem 26.3 (Dominated Convergence Theorem) Let {fn} be a sequence
of measurable functions converging pointwise to a function f . Suppose that
∃g : R → [0,∞) which is measurable,a nd

∫∞
−∞ g(x)dx <∞, and |fn(x)| ≤ g(x),

∀n, x. Then
∫∞
−∞ f(x)dx = limn→∞

∫∞
−∞ fn(x)dx

These two theorems are some of the main reasons why Lebesgue integration is
very useful. No longer need uniform convergence to swap limits and integrals
(limit of integrals is the integral of the limit).

26.3 Fun Exploration [Kolmogorov-Arnold]

f : [0, 1]2 → R. f(x, y) = x+ y. f(x, y) = xy = exp(log x+ log y).
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One of Hilbert’s 20 questions: how many questions of multiple variables can be
expressed as a sum of functions of other functions. xy is multiplication which
is equal to the sum of exp(log x+ log y). Amazingly, this is true (1957-1956).

Theorem 26.4 (Kolmogorov-Arnold Theorem) Take any n ≥ 2, ∃ func-
tions ϕpq ∈ C[0, 1], p = 1, ..., n, q = 1, ..., 2n such that any f ∈ C([0, 1]n) [space
of continuous functions of n-variables to be restricted between 0 and 1] can be

represented as f(x1, ..., xn) =
∑2

q=1 ngq(
∑n

p=1 ϕpq(xp)) for some q1, ..., q2n ∈
C[0, 1] depending on f . Note ϕpq does not depend on f!! ϕpq is universal. There
are no multi-variate functions – it’s all just a sum of univariate functions. But
q’s do.

This gave rise to the field of approximation theory (relevant to neural networks).

Proof:

Theorem 26.5 (Baire Category Theorem – Simplest Version) Let (x, d)
be a complete metric space. Let D1, D2, D3, ... be a sequence of open, dense sub-
sets of X. Then ∩∞

n=1Dn is dense (and in particular is non-empty).

Def.[Dense] A set A ⊆ X if A = X. For example, the rational numbers are
dense in the real line (since the closure of the rational numbers equals the reals).

Rationals and irrationals are both dense in R, but their intersection is empty.
In this case, if we have a sequence of open dense subsets, then the intersection
is dense (and therefore non-empty).

27 December 9

27.1 Kolmogorov-Arnold Theorem

Theorem 27.1 (Baire Category Theorem) Let (X, d) be a complete metric
space. Let D1, D2, ... be open, dense subsets of X. Then ∩n

i=1Di is dense.

Proof:
Take any x ∈ X and ϵ > 0.
To show ∃y ∈ ∩n

i=1Di, such that y ∈ βϵ(x) a subset is dense if and only if every
open ball has an element of that set.

SinceD1 is dense, ∃y1 ∈ D1∪β ϵ
2
(x). SinceD1 is open, ∃r such that βr(y1) ⊆ D1.

Take r1 = min{r, ϵ2}. Then βr1(y1) ⊆ D1 and βr1(y1) ⊆ βϵ(x).

Since D2 is dense, ∃y2 ∈ D2∩βr 1
2

(y1). Again, since D2 is open, ∃r > 0 such that

βr(y2) ⊆ D2. Let r2 = min{r, r12 }. Then βr2(y2) ⊆ D2. βr2(y2) ⊆ βr1(y1) ⊆
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βϵ(x). [Correction: choose ri+1 ≤ ri
4 instead of ri

2 – ensures the limit cannot
converge to the boundary of the open ball.]

We proceed in this way to find y1, y2, y3, ... and r1, r2, r3, ... such that ∀i, βri(yi) ⊆
Di.
(2) ∀i, βri+1(yi+1) ⊆ βri(yi)
(3) ri+1 ≤ ri

2 ∀i
(4) βr1(y1) ⊆ βϵ(x).

Then note that ∀i < j, yj ∈ βrj (yj) ⊆ βrj−1
(yj−1) ⊆ ... ⊆ βrj (yi) ⇒ d(yi, yj) <

ri ≤ ϵ
2i .

Thus, {yn}∞n=1 is a Cauchy sequence. Let y = lim
n→∞

yn which exists since (X, d)

is a complete metric space. Note that, for each i, d(yi, y) = lim
j→∞

d(yi, yj) ≤ ri.

[But this isn’t good enough – we want strictly less than]. Thus, for any i,
d(yi, y) ≤ d(yi, yi+1) + d(yi+1, y).
d(yi, y) ≤ d(yi, yi+1) + d(yi+1, y) ≤ ri

2 + ri
4 = 3ri

4 < ri.

Find r such that βr(yi+1) ⊆ Di+1. Let ri+1 = min{r, ri4 }. Therefore, y ∈
βri(yi) ⊆ Di ∀i ⇒ y ∈ ∩Di ⇒ y ∈ βϵ(x).

Proof-sketch for Kolmogorov-Arnold Theorem
Take any n. Let Φ = {ϕ ∈ C[0, 1]|ϕ is increasing. , ϕ(0) = 0, ϕ(1) = 1}.

Fix some λ1, ..., λn > 0 which are distinct and
∑n

i=1 λi = 1. Choose some
ϵ > 0 (to be determined later). For any f ∈ C([0, 1]n), f ̸= 0. Define ω(f)
to be the set of all (ϕ1, ..., ϕ2n+1) ∈ Φ2n+1 such that for some h ∈ C[0, 1],
we have ||h|| ≤ ||f || where ||f || = supx∈[0,1]n |f(x)|, and ∀x1, x2, ...xn ∈ [0, 1],

|f(x1, ..., xn)−
∑2n+1

q=1 h(
∑n

p=1 λpϕq(xp))| < (1−ϵ)||f || [this is an approximation
of f].

Endow Φ2n+1 with the metric d((ϕ1, ..., ϕ2n+1), (ψ1, ..., ψ2n+1)) =
2n+1∑
i=1

||ϕi−ψj ||

where ||.|| is the supremum metric.

Clearly, ω(f) is open. A complicated construction shows that for a small enough
choice of ϵ, ω(f) is dense in Φ2n+1 ∀f .

Fact: C([0, 1]n) has a countable dense subset. Let’s say F . By the Baire Cate-
gary Theorem, ∪f∈FΩ(f) is nonempty. Take any (ϕ1, ..., ϕ2n+1) ∈ ∩f∈FΩ(f).
Take any f0 ∈ C([0, 1]n). Take f ∈ F such that ||f || ≤ ||f0||, ||f −f0|| < ϵ

2 ||f0||.
Since (ϕ1, ..., ϕ2n+1) ∈ ∪g∈FΩ(g) ⊆ Ω(f), there exists h0 ∈ C[0, 1] such that

||h0|| ≤ ||f || and |f(x1, ..., xn)−
∑2n+1

q=1 h0(
∑n

p=1 λpϕq(xp))| < (1− ϵ)||f ||.
⇒ |f0(x1, ..., xn)−

∑2n+1
q=1 h0(

∑n
p=1 λpϕq(xp))| < (1− ϵ)||f0||
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Then take the remainder f1(x1, ..., xn) and find h1, etc. Continue this process:

f0(x1, ..., xn) =
∑2n+1

q=1

∑∞
j=0 hj(

∑n
p=1 λpϕq(xp))

It follows that ||hj || → 0 exponentially fast. h =
∑∞

j=1 hj ∈ C[0, 1].
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